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ABSTRACT

The flow along an attachment line with roughness may become turbulent at the lowest Reynolds

number of all transition mechanisms active on a swept wing. Should the flow along the attachment

line become turbulent, the flow on the rest of the wing, on both upper and lower surfaces, may also

become turbulent, as evidenced during the X-21 flight program. The incomplete understanding of

the attachment line and crossflow transition processes is one of the fundamental obstacles to the

development of an economically viable, supersonic, laminar flow aircraft.

To date, no theoretical model for the stability of a compressible attachment-line flow has been fully

validated. The main reason for this is the very limited amount of accurate experimental data currently

available. Experiments were therefore conducted on a 76 ° swept cylinder to establish the behavior of

the attachment line transition process in a low-disturbance level ("quiet"), Mach number 1.6 flow. The

use of a quiet tunnel was necessary in order to duplicate the freestream disturbance level encountered

at high altitude. The use of a finite length cylinder has been shown to be a useful tool for determining

the flow along the leading edge of a highly swept supersonic wing and for studying the flow physics

of the attachment line transition process.

The use of a pressure tapped model allowed accurate values of the appropriate viscous length

scale and Reynolds number to be obtained, and these were in good agreement with those obtained

with an Euler (CFL3D) and boundary layer (BL3D) computational fluid dynamics code. A hot-wire

anemometer system, capable of achieving frequency responses in excess of 200 kHz, was developed

for Mach 1.6 operation, since the boundary layer disturbances were anticipated to be in the

50--100 kHz range.

It was found that for a near adiabatic wall condition, the attachment-line boundary layer remained

laminar up to the highest attainable Reynolds number in the Mach 1.6 Quiet Wind Tunnel at Ames

Research Center ( R of 760). The attachment-line boundary layer transition under the influence of trip

wires was found to depend on wind tunnel disturbance level, and a transition onset condition for this

flow is established. This boundary suggests that current design practice, based on previous results

from conventional tunnels, may be conservative (i.e., roughnesses, twice as large as previously

thought possible, could be applied to the attachment line before the onset of transition is observed).

Since the Reynolds number range of the wind tunnel was insufficient to cause transition on the

model, internal heating was used to raise the surface temperature of the attachment line and alter the

boundary layer mean-flow profile, so inducing boundary layer instabilities. This was demonstrated

experimentally for the first time and the frequencies of the most amplified disturbances were deter-

mined over a range of temperature settings. Results were in very close agreement to those predicted by

a linear stability code (2DEIG) by R. -S. Lin of High Technology Corporation, Hampton, Virginia,

and provide the first experimental verification of theory and the nature of the growth of the instabilities

with surface heating.

A data set was obtained for transition onset along the heated attachment line at an R of approxi-

mately 800 under quiet tunnel conditions. Transition location was found to correlate with an approxi-

mate N factor of 13.2, where transition onset is identified with a total amplification of eN starting at the

xvii



instabilitypoint.Increasingthetunneldisturbancelevel throughtheuseof tripsonthewallsof the
wind tunnelcausedthetransitiononsettooccuratlowercylindersurfacetemperaturesfor thesame
freestreamunit ReynoldsnumberandMachnumber.This transitionlocationwasfoundto correlate
with anapproximateN factor of 11.9, thus demonstrating that the attachment line is receptive to
increases in the freestream disturbance level.

Flow visualization techniques used included Schlieren photography, oil flow, temperature sensitive

paint, and naphthalene sublimation. The latter revealed the presence of stationary crossflow vortices

off the attachment line, and a hot wire traversed in the chordwise direction appeared to indicate that

these vortices lead to transition at an angle of about 30 ° around the circumference.
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balance bridge inductance
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Nusselt number
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RO
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t

T
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universal gas constant
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1. INTRODUCTION

1.1 Background

1.1.1 The High Speed Civil Transport

Projections made in 1988 suggested that the worldwide demand for long-range air travel would

double by the year 2000 and double again by the year 2015 (ref. 1). One option to meet these

demands is to consider a new generation of commercial transports that can carry approximately

300 passengers at Mach 2.4 over a 5000-6000 n. mi. range, aimed specifically at trans-Pacific

routes such as Los Angeles to Tokyo (fig. 1-1). This concept, called the High Speed Civil Transport

(HSCT), is projected to have a passenger seat cost per mile that is only 20% more than current

economy class fares (ref. 2), and must therefore be made significantly cheaper to operate than the

current Concorde. Such a feat of economics can only be achieved through the use of modern tech-

nologies such as lightweight composite structures, improved engine performance, sonic-boom

alleviation and better aerodynamics. Design studies (refs. 2 and 3) have shown that actively con-

trolling the airflow over the wings, and hence maintaining skin friction drag at its laminar value,

would be a desirable technology to achieve these goals. Laminar flow control (LFC) benefits include

increased range and payload, lower fuel weight and usage, lower skin temperatures, and increased

altitude, and hence lower sonic-boom ground signatures (ref. 4). Particularly important to the

achievement of LFC is the understanding of the boundary layer transition process in the leading

edge region of such a highly swept wing.

1.1.2 Definition of the Attachment Line

Consider the flow of air approaching a wing, as sketched in figure 1-2. If the wing is unswept,

then air passes over and under the wing, and the dividing streamline along the leading edge is the

stagnation line. If the wing is swept back, then a component of air flows out along the leading edge

toward the tip. The dividing streamline along which this component of air flows is termed an

attachment line. This attachment line provides a mechanism for disturbances generated at the

wing/fuselage juncture to travel out along the wing toward the tip. If the attachment line becomes

turbulent, then disturbances from the leading edge will be transported downstream and may cause

the rest of both upper and lower surfaces of the wing to become turbulent. Laminar flow control

applied aft of the attachment line, designed on the assumption of a laminar attachment line, may
well be insufficient to control the disturbances.

1.1.3 Supersonic Boundary Layer Transition Mechanisms

Figure 1-3 shows that there are many transition mechanisms at work on a swept wing in

supersonic flow, including Tollmien-Schlichting (T-S), Taylor-G/3rtler, and crossflow instabilities,

attachment-line contamination and attachment-line transition. T-S transition involves the amplifica-

tion of initially small disturbances and is the "classical" form of transition found in two-dimensional



low-speedflows.Taylor-G6rtlerinstability is inducedby wall or streamlinelongitudinalcurvature.
Crossflowinstability is causedby a pointof inflectionin thethree-dimensionalvelocity profile.
Consequently,by Rayleigh'stheorem(ref. 5),an instability(in theform of co-rotatingvortices)is
formedwhich is unstableto arangeof disturbancesat infinite Reynoldsnumber.Muchwork has
beenconductedon theformationandcontrolof thesedisturbances.However,thesebecome
irrelevantshouldtheattachmentline first becometurbulent.

1.1.4 Dimensional Analysis and Similarity Parameters

The steady compressible flow in the immediate vicinity of a swept-infinite attachment line

depends only on the following parameters:

Ve( loVeaeX w
provided surface roughness and freestream turbulence level effects are small. According to the

Buckingham Pi Theorem, this flow can be completely described by six independent, nondimensional

groups. The choice of groups is essentially arbitrary, but for the present purposes, it is convenient to

nominate the following:

oleX,rv
In the study of the transition behavior of swept wings, several dimensionless parameters have

been proposed and used as the characteristic Reynolds number for transition of the boundary layer

from laminar to turbulent flow. Criteria for transition based on these parameters were generally

applicable to subsonic flow conditions as they were based on incompressible flow assumptions.

However, in some cases they have been extended to compressible flow.

1.1.4.1 Momentum Thickness Reynolds Number (R 0 )

This parameter was used by several authors including Gaster (ref. 6), Gregory (ref. 7), and

Pfenninger (ref. 8), who applied it to swept wings in subsonic flow, and by Topham (ref. 9), who

extended it to swept circular cylinders in supersonic flow. It was based on the laminar momentum
thickness at the attachment line:
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wherethelaminarmomentumthicknessin incompressibleflow canbeexpressedas:

Ve
o--o.4o44 1

t, dx )x=O)

Since the momentum thickness is based on laminar flow conditions, the value of R 0 loses its

physical significance in turbulent flow. However, it has been used indiscriminately for both laminar

and turbulent flows as it is relatively easy to evaluate.

1.1.4.2 Attachment-Line Similarity Parameters ( R, R,)

R was proposed by Poll (refs. 10 and 11):

VeO,= _ where r/-
V

-,112

t. dx ) x=O

(as formed from the above Pi Theorem analysis).

For incompressible flow conditions, R is uniquely defined as above for both laminar and turbulent

conditions since the kinematic viscosity is based on Te in both cases.

In the case of a compressible flow with strong attachment-line contamination, Poll showed that

the available data could be correlated with a simple value of the similarity parameter of the attach-

ment line R.,, on the condition that the kinematic viscosity is evaluated at a reference temperature T,

(refs. 12 and 13). This temperature has been defined so as to correlate the data of heat transfer and of
turbulent friction on the attachment line:

T, : Te + 0.1(T w - Te)+O.6(Z r - Te)

_. = VeJ---_,where r/, -
V,

V,

l xJx=oj

/2
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1.1.5 The Transition Process, Receptivity and Bypass

The boundary layer instability and transition process is best introduced by considering the

growth of two-dimensional T-S modes along a flat plate, as depicted in figure 1-4 taken from

reference 14. Region 1 is the stable flow region, in which infinitesimal (small) disturbances are

introduced into and received by the boundary layer (receptivity process). As the critical Reynolds

number is exceeded, energy is transferred from the mean flow into selected instability waves which

grow in the now unstable boundary layer, region 2. This slow growth of selected waves occurs

without affecting the mean flow noticeably until a threshold amplitude of 0.5-1.0% of freestream

velocity is reached. At finite perturbation amplitudes, rapid nonlinear amplification occurs through

secondary and tertiary instabilities where one or more instability modes have grown sufficiently to

affect the mean flow. Breakdown of the laminar boundary layer starts at disturbance amplitudes of

3-5% of the freestream velocity (region 3). Initial bursting occurs in region 4, and these bursts grow

so large that they create intermittent three-dimensional "islands" of turbulence, called "spots"

(region 5, also known as the intermittent region). Breakdown, or transition onset, is defined at the

first occurrence of these turbulent (Emmons) spots. This leads to fully turbulent flow in region 6. It

should be noted that in figure I-4, region 2 has by far the greatest length in practical aerodynamic

engineering applications.

Morkovin (ref. 15) attempted to capture the various evolutionary paths to turbulence as shown in

figure 1-5. The initial external disturbances, such as freestream vorticity and sound, are believed to

enter the boundary layer from the surroundings via a process known as receptivity. As described

above, these disturbances may lead to turbulent flow through several stages. Should the initial

disturbances be very large or should surface excrescences exist, then one or more of these stages

may be bypassed, leading to premature turbulence. Bypass mechanisms are usually characterized by

nonlinear three-dimensional spatial/temporal disturbances, such as roughness, noise, waviness,

vibration, etc. Current boundary layer stability theory attempts to model the slow linear amplifica-

tion of small disturbances for many cases.

1.1.6 Wind Tunnel Turbulence Levels

Given the fact that receptivity plays such an important part in initializing the transition process, it

should not be surprising that the transition onset location is often a function of disturbances in the

freestream and surroundings. Figure 1-6, from Pat6's summary on the effects of wind tunnel distur-

bances on boundary layer transition (ref. 16), shows the three main disturbances that might influence

a model in the test section: vorticity fluctuations (turbulence), entropy fluctuations (temperature

spottiness), and sound waves (pressure fluctuations). Vorticity and entropy fluctuations are essen-

tially convected along streamlines and are traceable to conditions in the settling chamber. Sound

disturbances can travel across streamlines and, consequently, can originate in the settling chamber,

radiate from turbulent boundary layers along the tunnel walls, and be induced by wall vibrations.

These three fundamental and distinctly different types of freestream modes can exist independently

in compressible flow wind tunnel facilities.
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Thesedisturbances,therefore,becomeaparticularconsiderationwhentrying to conduct
transitionexperimentsin wind tunnels,which havehistoricallyhadordersof magnitudegreater
disturbanceswhencomparedwith flight athigh altitudes(ref. 17).Therefore,greateffortsaremade
to ensurethatthetunnelenvironmentapproximatesthatof flight in quiescent,orquiet, altitudes.
Thesequiet tunnels, as they are termed, employ techniques such as screens, boundary layer bleeds

(to maintain laminar boundary layers), and structural vibration isolation in order to keep distur-

bances to a minimum. There are approximately only five quiet supersonic wind tunnels in the world

today (1997). For more details about quiet tunnels, refer to the review of quiet tunnel technology by

Wilkinson et al. (ref. 18).

1.2 Transition Prediction Schemes

1.2.1 Hierarchy of Schemes

In order of historical development and improved physical modeling (but increased computational

and experimental complexity), the hierarchy of methods for transition correlation, analysis, and

prediction is as follows:

(1) Methods based on integral boundary layer parameters.

(2) Methods based on linear stability theory for parallel flow (e N method).

(3) Methods based on parabolized stability equations (PSE).

(4) Methods based on secondary, nonparallel, stability theory.

(5) Methods based on direct numerical solution (DNS) of the Navier-Stokes equations with unsteady

freestream input conditions.

Method 2 is known as an amplitude-ratio method, and is currently used in most engineering design

and analysis involving transition. Methods 3-5 are known as amplitude methods. For more

information on PSE, see references 19 and 20.
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1.2.2 Linear Stability Theory and eN Method

The method most commonly used in industry for transition prediction is based on linear stability

theory and the eN method (refs. 21-23). These linear stability codes are used to determine the ampli-

fication of perturbation waves of given direction, frequency, and wavelength. The procedure is to

establish a base flow and add disturbances of an assumed form. The system of equations is then

linearized and solved. The solution can be carried out in either a temporal or spatial frame of refer-

ence. A transformation between the two frames of reference can be made with reference to the group

velocity (ref. 24).

If the amplitude at the neutral stability point is called A 0 and the amplitude at the onset of

transition is Atr, then

(tl
Empirical criteria are then used to make the predictions useful, assuming that transition occurs at a

given value of N. Low values of N are associated with conventional wind tunnels (since high free-

stream disturbance levels lead to high values of A0); high values of N are presumed to be valid for

flight. The value of N = 9 is often used, and given by the formula above this corresponds to the local

amplitude being more than 8100 times the amplitude at the instability point.

The eN method is used to analyze T-S, attachment line, crossflow, and G6rtler instabilities.

N-factor calculations can predict transition onset as a function of parameters which influence the

mean flow, i.e., Mach number, pressure gradient, watl temperature, angle of attack, wall suction,

sweep, discrete roughness, curvature, and flow chemistry. The calculations, however, cannot directly

include the effects of organized vortices, combinations of nonlinear modes, and elevated disturbance
fields.

Crucial to a good N-factor calculation is the fidelity of the initial three-dimensional mean flow

calculation and the modeling of the receptivity mechanisms (if employed). The boundary layer flow

must first be calculated for input to the linear stability code. Typically, one would first calculate the

inviscid mean flow from an Euler code which then produces the edge pressures and velocities which

are the input for a boundary layer calculation with a dense grid. Application of Navier-Stokes codes

to generate boundary layer profiles is extremely expensive and time consuming, but may be neces-

sary in certain flow situations, such as comer flows. All boundary layer codes must provide accurate

and smooth velocity and temperature profiles and derivatives, and have adequate resolution of

profiles toward the boundary layer edge for supersonic Mach numbers. (It is not uncommon to

demand second derivatives of the velocity and temperature profiles of the mean flow to four decimal

places).
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1.2.3 Mach Number Effects

Mack (refs. 25-28) showed that for a flat plate at supersonic Mach numbers up to about four,

the laminar boundary layer is unstable to what he called first-mode disturbances. These are the

compressible-layer counterpart of T-S waves, except that they are most unstable when aligned at

about a 50 ° to 60 ° obliqueness angle, rather than when two-dimensional. At Mach numbers above

that range, a second mode of instability appears and becomes the more unstable of the two (fig. 1-7).

It is unique to compressible flows, and is most unstable when aligned such as to be two-dimensional.

Second-mode waves are destabilized to a moderate extent when the wall is cooled, whereas the first

mode of instability is destabilized by heating. It is therefore important to realize the local Mach

number of the flow of interest in order to appreciate the instability modes at work.

1.3 Literature Review

Excellent reviews of attachment-line research can be found in references 29 and 30.

1.3.1 Subsonic Flow

Early theoretical investigations in this field seemed to indicate that transition of the leading edge

boundary layer would not be affected by the wing sweep. However, flight tests conducted by Gray

(ref. 31) on a range of swept wing aircraft at the Royal Aircraft Establishment between 1951 and

1952 showed that the transition front moved forward very rapidly once a critical speed was

exceeded. It was then generally believed that the leading edge transition was caused by the sweep

induced crossflow instability. This concept of leading edge transition was further reinforced by

Owen and Randall (ref. 32), who suggested that the crossflow instability arose from a secondary

flow in the boundary layer directed at right angles to the external streamlines.

In 1963, projects by Handley Page Limited and Northrop Norair to produce laminar flow swept

wings were not successful. These swept wings were designed with suction devices to control the

crossflow instability, and hence produce extensive laminar flow. However, initial flight tests showed

that the laminar flow was restricted to small regions near the wing tips, and the flow was, in general,

turbulent on the attachment line. Several experiments were conducted to investigate the transition

behavior of the boundary layer in the attachment line, notably by Gregory (refs. 7 and 33), Gaster

(ref. 6), and Pfenninger (refs. 8 and 34).

Gregory (refs. 7 and 33) conducted experiments to investigate the transition behavior of swept

leading edges in the National Physical Laboratory 13 x 9 ft and 9 x 7 ft wind tunnels. Using hot

wires and hot-film gauges to detect transition, first bursts of turbulence were obtained for R

between 220 and 233, while complete turbulence occurred at R between 235 and 243 in the pres-

ence of a large trip wire. When the attachment line was contaminated by a turbulent boundary layer

generated by a small streamwise flat plate, it was found that transition occurred as R increased

from 230 to 260.



Gaster(ref. 6) cardedout flight experimentsusingataperedsweptwing mountedvertically
abovethefuselageof aLancasterbomber.Hot-film gaugeswereusedto detecttransition.It was
found thatthecritical valueof R for the start of transition was about 220, while transition was

complete at R of about 240. It was conf'u-med that the turbulent flow at the leading edge was caused

by the turbulent contamination spreading from the wing root along the attachment line. Wind tunnel

tests were also carried out in the Cranfield College of Aeronautics 8 × 6 ft subsonic tunnel at sweep

angles of 40 ° to 60". It was found that in the presence of large trip wires, transition occurred at R of

260, while for small disturbances, laminar flow was maintained up to the maximum obtainable value

of R of 420. A device for preventing attachment-line contamination called the "Gaster bump" was

tested in both wind tunnel and in flight and found to be effective up to the maximum value of R of

420. This consisted of a small fairing which was attached to the leading edge close to the wing root,

and was shaped in such a way that the contaminated turbulent boundary layer was brought to rest at

a stagnation point on the inboard side while a "clean" laminar boundary layer was generated on the
outboard side.

Pfenninger's group carried out flight tests on the Northrop X-21A aircraft as well as model tests

in the Northrop 8 x 11 ft low speed wind tunnel (refs. 8 and 34). They concluded that the turbulent

flow in the inboard region was caused by the spanwise turbulent contamination along the attachment

line originating from the wing fuselage junction. Using hot wires on model wings swept back at 33 °

and 45 ° and in the presence of gross disturbance sources, Pfenninger found that bursts of turbulence

propagated along the attachment line when R was between 235 to 260, while transition was

complete when R was between 260 and 272. With strong suction at the wing fence junction,

laminar flow was obtained up to the top speed of the tunnel at R of 350, while complete laminar

flow existed on both upper and lower surfaces of the wing if R was less than 250.

Cumpsty and Head (ref. 35) developed an approximate method of calculating three-dimensional

turbulent boundary layers in which all terms in the momentum integral equation in the streamwise

and crossflow directions were considered. This analysis was applied to the calculation of the

turbulent attachment-line flow on a swept-infinite wing, and reasonable agreement was obtained

with the isolated measurement by Gaster (ref. 6). They recognized that the dimensionless parameter

C, defined as C = (_)2, was the relevant Reynolds number for the prediction of transition on the

attachment line of a low speed swept wing. The calculations were later compared to the results of

wind tunnel measurements of the attachment-line boundary layer of a swept wing in low subsonic

flow (ref. 36). Using a swept wing with a sweep angle of 60 °, a wide range of values of C was

covered in the experimental investigation. A hot-wire gauge was used to detect transition of the

boundary layer. Without a trip wire, the attachment-line flow was laminar over the full range of

up to 3.7 x 105, corresponding to a value of R of about 610. With a large trip wire fitted at the

leading edge, transition of the attachment-line flow was observed in the range 0.6 × 105 < C<

1.4 × 105, corresponding to 245 < R< 374. At higher values of C, the flow was fully turbulent.

The transition behavior of the attachment-line flow was comprehensively investigated by Poll

(refs. 10 and 11) in the Cranfield College of Aeronautics 8 x 6 ft subsonic wind tunnel. Using the

same swept wing model as Cumpsty and Head, values of R ranging from 125 to 740 were obtained

in the tests for sweep angles of 50 ° to 70 °. A constant temperature hot-wire probe was used to detect



transitionon theattachmentline. Poll correlatedtheattachment-linetransitionbehaviorwith two
parameters:the attachment-linesimilarityparameterR and the ratio of roughness heights (e.g., trip

wire height) to local length scale k/77. Results are summarized in figure 1-8.

For the smooth cylinder ( k / r/= 0), it was found that the subsonic attachment-line boundary

layer had no unstable modes when R < 570. For R > 570, transition was the result of amplification

of small perturbations already present in the upstream flow, leading to two-dimensional perturbation

waves that were convected along the attachment line until they degenerated into turbulent spots.

For strong perturbations ( k / 77 > 2.0) induced, for example, through attachment-line contami-

nation or by a large diameter wire placed perpendicular to the attachment line, turbulence was

triggered immediately at the wire and continued to exist downstream if _' > 245. For k� r/< 0.8,

the perturbation had no effect on the transition process. For intermediate values of k / 77, the trip

wire introduced disturbances into the attachment-line boundary layer that were either amplified or

damped depending on the value of R. Results obtained by Poll (refs. 11 and 37) confirmed that a

turbulent boundary layer along an aircraft fuselage behaves as a source of strong perturbations

that can trigger transition, and that this turbulence can then propagate along the leading edge if
R > 245.

Poll and Paisley (ref. 38) also demonstrated the phenomenon of "reverse transition" along the

attachment line. On a tapered wing, R will decrease from the root to the tip (since the leading edge

radius usually decreases). Near the root, R is usually larger than 250, so that the attachment-line

flow is at first turbulent. However, if R becomes low enough, turbulence is no longer self-

sustaining and a "reverse transition" is likely to occur.

Arnal and Juillen (refs. 39 and 40) studied attachment-line contamination along the leading edge

of a 40 ° swept wing which was directly mounted on the wind tunnel floor in the vertical plane. They

found that leading edge contamination appeared at R = 251 + 11, and that the leading edge was

fully turbulent at R = 318 + 22. Similar results were also obtained by Hardy (ref. 41) on tapered

wings, thus confirming Poll's results.

Bippes (ref. 42) also observed the "natural" transition process along the attachment line (similar

to that seen by Pfenninger and Bacon (ref. 34), and Poll (ref. I0)).

In the late 1980s, a modified Jetstar was used as part of the Leading-Edge Flight Test Program

(refs. 43 and 44). Gloves were manufactured by Lockheed Georgia and Douglas Aircraft Company

and incorporated their own LFC system. Test conditions were Mach numbers from 0.7 to 0.8 and

altitudes from 32,000 to 40,000 ft, and included operating out of Atlanta in the summer and

Cleveland in the winter. The flight tests demonstrated the effectiveness and reliability of laminar

flow control under simulated airline service conditions, with particular attention being given to the

leading edge region. The flights also showed that, without using a turbulence-diverting device such

as a Gaster bump, a significant amount of attachment-line suction was found to be necessary in order

to obtain laminar flow over most of the wingspan of the test section. Other flight tests included an

F-111 and an F-14, which were used to study the crossflowf'f-S interaction on natural laminar flow

wing surfaces (ref. 45). For a comprehensive review of flight tests, see references 46 and 47.



Theseresultsall demonstratethatmaintaininga laminarattachmentline is crucial in the
applicationof laminarflow control.Therefore,theunderstandingof attachment-lineboundarylayer
stability representsapracticalproblemof primaryimportancein thedesignof advancedlaminar
flow control sweptwings.

Thefirst successfultheoreticalinvestigationinto the linearstabilityof the incompressible
attachmentline wasmadeby Hall et al. (ref. 48).Thebaseflow wasmodeledasasweptHiemenz
flow, andanonparallel,linearstabilitytheorywasusedin whichtwo-dimensionalG6rtler-
H_immerlin(G-H) instabilitymodeswereassumed.Thecritical Reynoldsnumberwasfoundto be
about R = 582, which was in good agreement with the experimental data. It was also found that

the attachment line was stabilized with small amounts of suction. Hall and Malik (ref. 49) later

explained the absence of upper branch neutral stability modes as being due to a subcritical

bifurcation along most of the upper branch.

Spalart (ref. 50) used a full nonlinear approach by solving the three-dimensional, time-dependent

Navier-Stokes equations. White noise was introduced and its growth checked for decreasing values

of R. He found that, indeed, the G-H disturbances were the most unstable. Starting from a large

value of R for which the attachment line was turbulent, he found that the turbulent structures dis-

appeared for R between 250 and 300. He also investigated the effects of suction, and compared the

results to linear theory and found that suction has a much weaker effect on the nonlinear phenomena

than on the linear stability of the laminar boundary layer. Two independent wind tunnel studies by

Poll and Danks (ref. 51) and Juillen and Amal (ref. 52) showed that turbulence propagating along

the attachment line can be relaminarized by applying surface suction. Their results agreed well with

the direct numerical simulations of Spalart.

Joslin (ref. 53) also conducted a direct numerical simulation by introducing two- and three-

dimensional disturbances into the three-dimensional attachment-line boundary layer. His results

agreed with Hall and Malik (ref. 49) in that he too found that a two-dimensional nonlinear distur-

bance growth occurs near branch II of the neutral curve. In general he found that three-dimensional

instabilities were more stable than two-dimensional, and that suction stabilized the flow.

More recently, Lin and Malik (refs. 54-56) developed a two-dimensional partial-differential

stability approach for the stability of the attachment-line boundary layer. Results obtained by this

generalized method confirm the critical Reynolds number reported by Hall et al. (ref. 48). Effects of

surface curvature and nonuniform suction on the stability were also addressed by Lin and Malik

(ref. 54).

1.3.2 Supersonic Flow

Dunning and Ulmann (ref. 57) conducted wind tunnel tests at Mach 4.0 to determine the effects

of leading edge sweep and angle of attack on crossflow boundary layer transition on flat plate wings

with blunt leading edges. The results showed that transition always occurred along a front parallel to

the leading edge. An increase in sweep angle caused the transition front to move closer to the

leading edge and decreased the transition Reynolds number.
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Oneof thefirst supersonicflight teststo useflow visualizationasameansof transitiondetection
wascarriedoutby McTigueet al. (ref. 58)onanF-104.Theaircrafthadsharpleadingedgeswith
low sweepandsupersonicleadingedges.Theleft wing wascleanedupby smoothingtheleading
edgeslatjoint andresidualroughness;therightwing hadafiberglassfairing with imbeddedtemper-
aturegauges.TestsatMach2.0andanaltitudeof 55,000ft producedcrossflowstriationsand
turbulentwedgesin thesublimatingchemicals.

Topham(ref. 9) carriedout asurveyof experimentaldataof heattransferrateson swept
cylindersandleadingedgesin supersonicflow up to Mach10.Hefoundgoodcorrelationbetween
thetransitioncharacteristicsattheattachmentline andReynoldsnumberbasedon thelaminar
momentumthickness.It wasdeducedthattransitionof theattachment-lineboundarylayerin
supersonicflow beganwhenR 0 was 130, corresponding to a value of R, about 310. Based on the

experimental and theoretical results of Beckwith and Gallagher (ref. 59), he further proposed that the

flow would be completely turbulent when R 0 was 450 ( R, of 1070).

Measurements of heat transfer rate at the attachment line of a swept circular cylinder at Mach 2.4

and Roo,D of 105 were carried out by Brunet al. in 1965 (ref. 60). Transition of the attachment-line

flow was observed at a value of R, of about 220 when the flow was contaminated by turbulence

from a streamwise end plate. Similar measurements were conducted by Bushnell (ref. 61) on a

swept circular cylinder with a wedge attached to the base of the model at Mach 8. He found that the

attachment-line flow changed from laminar to fully turbulent over the test Reynolds number Roo,D

of 0.77 x 105 to 8.7 x 105. The onset of transition in the presence of the wedge occurred at Roo,D of

about 1.4 x 105 (R, of about 210). Based on a survey of heat transfer data for swept leading edges at

Moo between 2.5 and 8, he deduced that transition generally occurred at Roo,D of about 2 x 105 for

sweep angles greater than 40 ° . Without the turbulent contamination of an adjoining surface, laminar

flow at the leading edge was maintained up to RooD of 8 x 105.

Bushnell and Huffman (ref. 62) surveyed a large amount of heat transfer data for swept leading

edges with sweep angles from l0 ° to 80 ° at supersonic and hypersonic speeds. They developed a

criterion which stated that attachment-line transition occurred at Roo,D = 0.2 x 106 for large

upstream disturbances, but when there were no disturbances, there were no occurrences up to the

upper limit for the available data at that time ( RooD = 0.8 x 106).

Poll developed a prediction criterion for transition induced by a gross disturbance at the

attachment line in supersonic flow by introducing the compressible similarity parameter R,

evaluated at a reference temperature (refs. 12 and 13). He correlated all the available data at that

time with this parameter and showed that transition of the attachment-line flow would begin at

P_, of 250 and would be complete when R, reached a value of 384.

Yeoh (ref. 63) conducted supersonic attachment-line transition experiments in the Cranfield

College of Aeronautics supersonic tunnel at Mach 1.7 to 2.4 using a swept cylinder. Four basic

configurations were tested using a circular trip wire and two end plates of different size and shape
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asgrossdisturbances in the Reynolds number range R,o,D = 1.2-3.2 x 105. Using a hot-film gauge,

it was deduced that transition along the "clean" attachment line was influenced by the wind tunnel

boundary layer which was deemed to be acting as an effective disturbance source (and hence the

tunnel was considered noisy). The values of R, for the onset of transition of the attachment-line

flow in the presence of a gross disturbance were in the range 240 to 278, which bracketed the value

suggested by Poll (ref. 10) of 250. Fully developed turbulent flow was not seen, however, and was

attributed to the slight favorable pressure gradient and a reduction in the value of R. along the

attachment line.

In 1985, an F-15 and an F-106 were used for supersonic natural laminar flow research flight

testing (ref. 64). In both cases, the use of a Gaster bump was found to be critical in maintaining a
laminar attachment line.

For a comprehensive review of flight tests, see references 46 and 47.

In the 1980s, experiments were conducted to investigate the effects of wind tunnel noise levels

on compressible attachment-line transition using swept cylinder models in the NASA Langley

Mach 3.5 Quiet Tunnel (refs. 65-67). Four swept cylinder models, of 45 ° and 60 ° sweep, were

tested. Transition location was determined by a sharp increase in the recovery factor as measured by

thermocouples. The cylinders were tested with and without trip wires placed perpendicularly across

the attachment line. Freestream turbulence levels, in terms of the root mean square fluctuating

pressure normalized by the mean static pressure, were varied from 0.05 to 0.5% by the opening and

closing of the boundary layer bleeds near the throat of the tunnel. It was found that without trip

wires, attachment-line transition occurred at Roo,D = 0.7--0.8 x 106 (R, = 650-700) independent of

tunnel noise levels, but with a small trip on the attachment line, transition Reynolds numbers were

reduced by high tunnel noise. The trips were therefore deemed to be a mechanism for the freestream

turbulence to enter into the attachment-line boundary layer and accelerate the transition process.

Crossflow vortices were observed downstream of the attachment line for laminar boundary layer

flows using oil flow visualization at R.o,D = 4.6 × 105.

Malik and Beckwith subsequently analyzed Creel's experiments at 60 ° sweep using the one-
dimensional quasi-parallel linear stability computer code COSAL (ref. 68), first based on a swept-

infinite cylinder (ref. 67) and then incorporating the finite length (ref. 69). Good comparison was

obtained between the computed wavelength of the most amplified stationary crossflow disturbances

and the oil flow measurements. Along the attachment line, spatial growth rates were calculated to

be the greatest for oblique waves with angles of 500--60 °, with frequencies of 100-175 kHz, and a

critical R of 640 was obtained. It was also found that moderate amounts of wall cooling signifi-

cantly stabilized the attachment-line boundary layer. However, it was noted that the boundary

layer thickness decreases with cooling, and may become more sensitive to surface roughness

resulting in subcritical transition, which the attachment-line boundary layer is known to exhibit as

shown by previous theoretical calculations for incompressible flow and experiments in subsonic
flow.
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Wie andCollier (ref. 70) followed with theirown stabilitycalculationsfor a swept-infinite
cylinder for Machnumbersfrom 0 to 3.5usingtheBLSTA boundarylayercode(ref. 71) ande Malik

(ref. 72). For the experiment of Creel, they calculated a critical R of 613 for a wave angle of 60 °,

close to the R of 640 calculated by Malik and Beckwith. They found that a wave angle closer to 50 °

gave the minimum critical R of 573 and noted that this value may decrease with the inclusion of

nonparallel effects, as was the case for incompressible flow (ref. 48). Small amounts of suction on

the attachment-line boundary layer was shown to be stabilizing by increasing the critical Reynolds
number.

Creel (ref. 73) later conducted tests on cylinders with sweep angles of 60 ° and 76 ° in the NASA

Langley Mach 3.5 Quiet Tunnel. A saw-toothed leading edge, a square device, and a fence were

tested to assess their effectiveness in relaminarizing the attachment-line boundary layer. Several of

the devices were successful at a sweep angle of 76 ° (subsonic leading edge), but none were

successful at 60 ° (supersonic leading edge).

Da Costa et al. (refs. 74 and 75) tested a swept cylinder at Mach 7.1 with 74 ° sweep and various

streamwise end plates attached to the apex to act as a gross disturbance source. Pressure and heat

fluxes were measured along the attachment line, and transition was detected by thermocouples

welded to the inside of the thin-walled model. It was found that transition appeared around R, = 250

if the boundary layer on the end plate was turbulent. Wall cooling (with liquid nitrogen) was found

to have a small stabilizing effect on transition. A detailed examination of the spanwise evolution of

disturbances found that when the boundary layer on the end plate was laminar, attachment-line

transition was triggered by the increased turbulence level of the tunnel.

Arnal et al. (refs. 76 and 77) studied boundary layer tripping due to three-dimensional roughness

elements placed on and near an attachment line at Mach 10 in the R3Ch wind tunnel. Two steel

cylinders were equipped with hemispherical noses and tested at sweep angles from 20 ° to 70 ° . The

boundary layer state was determined from temperature sensitive paint, thermocouples and an infra-

red camera. Their results showed that for a large roughness element placed on the attachment line, a

turbulent wedge could develop right behind it with a fully developed turbulent boundary layer

downstream. Poll's criterion was validated and they confirmed that Poll's criterion could be applied

for several types of gross disturbances, e.g., end plates and tripping devices. They also investigated

the effects of placing a roughness element off the attachment line. Turbulence was generated directly

behind a roughness element place at 10 ° off the attachment line, but the amplitude in the spanwise

direction quickly decreased with the far downstream part of the cylinder still being laminar. They

concluded that for a roughness placed off the attachment line, the strong negative pressure gradient

damps out the generated disturbances, and turbulent structures cannot develop. By contrast, there is

no streamwise pressure gradient along the attachment line, and transition occurs; hence the attach-

ment line is the location where the boundary layer is the most sensitive to roughness elements.

Temperature sensitive paint visualization revealed stationary vortices at around 40 ° , and one-

dimensional linear stability theory was used to predict the frequency of these streaks for three

increasing wall temperatures (refs. 77 and 78). The value of the most unstable wavelength was not

very sensitive to wall temperature, and roughly agreed with experiment flow visualization. For large

three-dimensional trips placed on the attachment line, tripping became effective as soon as R,

exceeded 250, in agreement with Poll's criterion. A similar result was obtained by da Costa using
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trip wires normalto theattachmentline (ref. 75).Placingtripsoff theattachmentline requiredlarger
trip heightsto trip theattachment-lineflow, andthisheightincreasedwith distancein thechordwise
direction.

SkuratovandFederov(ref. 79) studiedtheeffectof avariableheighttwo-dimensionaldistur-
banceandisolatedthree-dimensionalroughnesson theattachmentline of 45° and60° swept
cylinderswith hemisphericalcapsatMach6.0.Thetwo-dimensionaldisturbanceconsistedof a
small"wall" acrosstheattachmentlinethatcouldbe raisedandloweredby meansof amicrometer
screwgauge.However,it is suspectedthatthis introducedendeffectsandwasnot atruetwo-
dimensionaldisturbancesuchasa trip wire.Thenatureof theboundarylayerwasdeterminedby
comparingthemeasuredvalueof heatflux to calculations.For thecaseof two-dimensionalrough-
nessthey foundthatself-sustainingturbulenceoccursaboveP,.. = 240 and is almost independent of

the roughness height, consistent with Poll's criterion range. For distributed roughness, four rows of

emery grains were bonded onto the smooth cylinders perpendicular to the attachment line. Self-

sustaining turbulence was observed for R, = 250, again confirming Poll's criterion.

Cattafesta performed crossflow transition experiments on a 77.1 ° symmetric delta wing in the

NASA Langley Mach 3.5 Quiet Tunnel. Surface temperature distributions were obtained with

temperature sensitive paint, and transition results were compared with the eN code COSAL (ref. 80).

It was found that an N factor of 14 best correlated the results, and that traveling crossflow distur-

bances in the 40-60 kHz range were the most amplified. Experiments with suction were later

conducted (ref. 81), with Lin et al. (ref. 82) simultaneously performing stability calculations using

the compressible linear code e Malik3D (ref. 83). In both cases it was found that distributed suction

had a stabilizing effect, and that Reynolds number had a first-order effect on transition location. The

modes with the highest N factors were found to be traveling crossflow disturbances with frequencies

in the 20-90 kHz range, and the transition N values ranged from 10.5 to 14.

Holden and Kolly (ref. 84) studied the attachment-line transition on a swept cylinder for

Moo = 10 to 12 with sweep angles between 60 ° and 80 °. The effects of attachment-line contami-

nation were investigated by testing several configurations and with surface roughnesses. Thin-film

heat transfer gauges were used to identify transition onset. For smooth, highly swept configurations,

transition was observed on the attachment line for Reynolds numbers greater than Roo,D = 8 × 105.

For flows with attachment-line contamination, attachment-line transition was observed for R,

between 300 and 500, depending upon the magnitude of the upstream disturbance. However, it is

believed that their trip wires were placed too close to the tip of the model and so were in the

developing flowfield, which is known to yield results that do not truly represent a fully developed

attachment-line boundary layer.

Murakami et al. (ref. 85) performed experiments in the DLR hypersonic Ludweig tube wind

tunnel at Moo = 5.0 and 6.9. Experiments were conducted on cylinders with 30 °, 45 °, and 60 °

sweep, with and without large end disturbances. Attachment-line transition was determined using

the liquid crystal technique. Their results showed that attachment-line transition occurred at about

Roo,D = 1.5-3.3 x 105 and 9-12 x 105 with and without end plates, respectively. The gross distur-

bance results agree with both Poll's criterion and the Bushnell and Huffman transition criteria
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discussedabove.Transitionaft of theattachmentline wasalsoobservedasevidencedby a fine
streakpatternin the liquid crystals,typicalof thatinducedby crossflowinstability.

Recently,Bernardet al. (ref. 86)investigatedtheattachment-lineboundarylayeratMach7.1 at
60" and70" sweepangles.TransitionReynoldsnumberswereobtainedfrom heattransfermeasure-
ments.TheyvalidatedPoll's criterionat 60° sweepandfoundthatthree-dimensionalroughness
elementsseemedmuchmoreefficient in promotingtransitionthantwo-dimensionalones.

Lin andMalik (ref. 87)extendedtheirtwo-dimensionalincompressibletheory(refs.54-56) to
supersonicspeedsandstudiedthelinearstabilitycharacteristicsof theattachment-lineboundary
layer ona60° sweepinfinite spancylinderin aMach3.5freestreamusinganeigenvalueapproach.
Theyfoundthat themostunstabledisturbancesin this flow wereobliquetravelingwaveswith
frequencieson theorderof 100kHz. Dueto thestrongdestabilizingeffectof nonparallelterms,the
critical Reynoldsnumberdecreasedfrom R = 573 ("I-D" parallel theory) to R = 349 ("2-D"

eigenvalue approach).

Lin (ref. 88) has incorporated nonparallel effects into a compressible attachment-line stability

computation. Modeling the finite length cylinder of Creel et al. (refs. 65--67), Lin found the frequen-

cies of unstable oblique traveling modes to be of the order of 100 kHz. Calculations found that the

most unstable mode led to an N factor of 11.7 at y / D = 5 (position of measured transition onset for

clean model). Details of this code are given in Chapter 5.

Two F-16XL aircraft were modified by NASA Dryden for supersonic laminar flow control

research up to Mach 2 (refs. 89 and 90). The F-16XL wings had inboard sweep of 70 ° and outboard

sweep of 50 °, similar to the proposed HSCT wing configuration. Ship 1 was modified to accommo-

date an LFC suction glove on the left wing and a passive glove on the right wing. Attachment-line

contamination was to be controlled by a wing root cutout and maintaining a sharp leading edge, and

crossflow was to be controlled by suction. Instrumentation included static pressure, skin temperature

gauges and hot-film sensors. It was found that small regions of laminar flow were obtainable near

the leading edge for the case of no suction, and that this area increased with suction applied.

However, no laminar flow was obtained at the design flight condition of Mach 1.6 and 44,000 ft.

Earlier, Iyer (ref. 9 I) had conducted linear stability analyses of fully three-dimensional boundary

layers formed on the laminar flow control glove fitted on the F-16XL using the linear stability code

COSAL. It was found that in each case the most amplified modes were traveling crossflow waves.

In addition, suction was found to have a stabilizing influence, significantly extending the possible

extent of laminar flow. COSAL was also applied to the suction glove of the F-16XL (ref. 92), and a

study of the attachment-line location and crossflow profiles to angle of attack for the F-16XL were

conducted by Flores et al. (ref. 93).

The F-16XL ship 2 aircraft was similar to ship 1 in planform and was configured with a passive

glove on the right wing, and an active suction glove on the left wing from the leading edge to

approximately 50% chord. Hot films and pressure taps determined the state of the boundary layers

and mean flow. Smith (ref. 94) noted that the supersonic laminar flow control experiment achieved

about 70-80% of the initial goals (which included achieving 50-60% chord laminar flow). Because
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of thepotentialbenefitsto theHSCT,specificresultsof theflight experimentaresensitive
informationandarenotavailable.

1.4 Purpose of This Investigation

In surveying the foregoing literature review, several points become clear. First, natural transition

along supersonic attachment lines has rarely been observed in wind tunnel tests. This is attributed to

noisy wind tunnels, available run lengths of experiments and operating conditions. Subsequently, the

majority of the surveyed literature covers the case of gross contamination of the attachment-line

boundary layer. It is also apparent that code validation is needed if progress is to be made regarding

understanding the transition physics. Only by first understanding the underlying boundary layer

transition physics can one hope to control the transition process and hence reduce drag. This has

been hampered, however, by the fact that instability waves have never been directly measured in a

supersonic attachment line. In order to advance the understanding of the supersonic attachment-line

boundary layer, the following objectives for this research are presented:

(1) Conduct experiments in a "quiet" supersonic wind tunnel.

(2) Place two-dimensional trip wires across the attachment line to represent the steps and gaps in a

wing's joined surface.

(3) Obtain measurements in an unstable viscous layer at and near an attachment line for "natural"

forcing conditions.

(4) Employ hot-wire anemometry to discern the nature of the boundary layer and the frequencies of

the most amplified disturbances.

(5) Compare results from a compressible attachment-line stability code to the experiment to analyze

computational transition modeling.

These unique data will be directly applicable to the HSCT, and important design information will be
obtained.
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Figure 1-1.Artist's impressionof theHighSpeedCivil Transport.
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Figure 1-2. Attachment-line transition process.
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Figure 1-3. Boundary layer transition on a highly swept HSCT wing.
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2. EXPERIMENTAL CONFIGURATION

AND TEST CONDITIONS

2.1 Idealization of the Leading Edge Region of a Swept Wing

The leading edge of a high speed aircraft's swept wing has a complex geometry, often incorpo-

rating a varying nose curvature, variable sweep angle, surface excrescences, and control surfaces.

In order to explore the aerodynamics of a suitably generic configuration (with a reduced number of

parameters) that could be applied to a swept wing, it was decided to model the leading edge region as a

swept circular cylinder (fig. 2-1). This configuration allowed for the replication of in-flight boundary

layer Reynolds numbers due to Mach number and R scaling, while retaining simplicity in design and

manufacture. Boundary layer stability results obtained with the swept cylinder would therefore be

directly applicable to real applications, such as the HSCT.

Further factors influenced the choice of testing parameters and model dimensions. The chosen

wind tunnel defined the operating conditions (Mach number, Reynolds number) and constrained the

diameter of the cylinder. Computational fluid dynamics (CFD) codes were then used to predict mean

flow parameters for various sweep angles and Reynolds numbers to finalize the parameter space.

2.2 Configuration and Geometry Selection

2.2.1 Parameters Set by Wind Tunnel Constraints

Since experiments were to be conducted in the Mach 1.6 Quiet Wind Tunnel at Ames Research

Center (Section 3.4), the freestream Mach number and Reynolds number range were predetermined.

The diameter of the cylinder was chosen to maximize the achievable R while not exceeding 10%

frontal area blockage to avoid tunnel starting problems. The test section of the wind tunnel measures

8 × 16 inches in cross section. Therefore, a cylinder could either be 16 inches long (in frontal projec-

tion) and 0.8 inch in diameter mounted normal to a side wall, or 8 inches long and 1.6 inches in

diameter mounted normal to the upper or lower wall. Since it can be shown that the value of R varies

as _ (ref. 11), the larger diameter of 1.6 inches was chosen in order to maximize R; hence the

model had to be mounted to either the upper or lower wall of the test section.

In order not to convect the boundary layer off the tunnel walls and along the attachment line, the

tip of the model was chosen to be in free space. This resulted in a forward swept cylinder that did not

extend all the way across the tunnel. In this way, a clean attachment-line boundary layer could be

initialized from the most forward point of the cylinder. Another consideration was the shape of the

most forward part of the cylinder. Creel (refs. 65-67) had selected an apex aligned with the stream-

wise flow (fig. 2-2), i.e., one that was cut so as to be parallel to the freestream. This gave a bow

shock wave that was attached at the apex which took several diameters of length in the spanwise direc-

tion to become approximately parallel to the cylinder surface. Consequently, swept-infinite flow condi-

tions were not established immediately but were approached at some distance down the attachment

line. Arnal (ref. 40) and Skuratov (ref. 79), however, selected a hemispherical end for their cylinders.
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This producedastandoffbow shockwaveandallowedtheshockwaveto becomesubstantially
parallelto thecylindersurfacein only afewdiametersdistancein thespanwisedirection.(Forthis
work, spanwiseisdefinedasalongtheattachmentline.)This featurealsohadtheaddedbenefitof
allowing thecylinderto beturnedaboutitscenterlineaxiswithoutaffectingtheexternalflow, andso
allowedforjust onespanwiseline of instrumentationto mapout thewholesurfaceof thecylinder.
However,thehemisphericalendintroducescomplexentropyswallowingeffects.Thestreamwisecut
shapewasselectedfor thepresentworksince,for thedatato becomparedwith computation,it was
necessaryto defineinitial conditionsfor theattachment-lineboundarylayeratsomeconvenient
spanwiseposition.This waseasierto accomplishwith thestreamwisecut shapethanthehemispheri-
cal capsincethefreestreamstreamlineof interestwouldcrossthebow shockneartheapex,andhence
thebow shockangleat thecrossingpointwouldbebetterknown.

2.2.2 Coordinate System

Figure 2-2 shows the coordinate system used for this work. A right-handed coordinate system

was chosen for the model surface, with its origin at the apex of the cylinder. The x-axis was aligned

normal to the attachment line in the chordwise direction, the y-axis was aligned along the attachment

line in the spanwise direction, and the z-axis was aligned normal to the surface (positive away from

the surface).

2.2.3 Parameters Suggested by CFD Analysis

In order to set the sweep angle of the cylinder, two CFD codes were run at three sweep angles to

calculate the spanwise distribution of R and other parameters of interest. At each sweep angle, the

code CFL3D (ref. 95) was run in inviscid (Euler) mode to calculate the mean flow around the swept

cylinder configurations. This code provided the boundary layer edge conditions which were then used

for the boundary layer computation using a simplified version of BL3D (ref. 96).

2.2.3.1 Description of CFD Codes CFL3D and BL3D

The CFL3D code solves the time-dependent conservation-law form of the compressible Navier-

Stokes equations using a thin-layer approximation in all three coordinate directions. The code solves

the discretized flow equations implicitly using an upwind-biased spatial-differencing scheme with

either flux difference splitting or flux vector splitting for the pressure terms, and central differencing

for the shear stress and heat transfer terms, resulting in a global second-order accuracy.

Several turbulence models are available to the user of CFL3D. The zero-equation (algebraic)

Baldwin-Lomax model is implemented with the option of using the Degani-Schiff modification.

The Johnson-King, one-half-equation model is implemented for single zone cases only. The

Baldwin-Barth and Spalart-Allmaras one-equation models and the two-equation k-co models of

Wilcox, Menter, and Anderson are available for multizone grid applications.
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Theinputoptionsfor CFL3Dallow theuserto haveflexibility in spatialdifferencing,time
advancement,andturbulencemodel.Fromonecaseto another,mostparametersremainunchanged.
ThephysicalinputparametersincludefreestrearnMachnumber,sweepangle,Reynoldsnumberper
unit length,andstatictemperature.ThecomputationalinputdataincludesCFLnumber(or time
stepif timeaccurate),choiceof multigridcycle,flux vectoror flux differencesplitting,diagonalor
5x 5 blockinversions,choiceof flux limiter, andchoiceof spatialaccuracy.

SeveralquantitiesareoutputfromCFL3Dthatprovideusefulinformation.A residual(L2normof
density)isoutputasonemeasureof convergence.Flowpropertiesincludingskinfriction, pressure
andtemperaturecanbeoutputonselectedsurfaces.PLOT3Dfiles (ref. 97)arealsooutputfor more
detailedpostprocessing.FurtherdetailsconcerningCFL3Daswell assomeapplicationscanbe found
in references98-102.

TheBL3D codesolvesthecompressible,three-dimensionallaminarboundarylayerequationsto
generatesmoothboundarylayermeanflow profiles,suchasmayberequiredasinputto aboundary
layerstabilityanalysis.Thesolutionprocedureisbasedonthespecificationof theboundarylayeredge
quantifiesU e , Ve , and Te . In addition, the computation of the edge density requires the specification

of the inviscid pressure p or the pressure coefficient Cp (for flows that involve a shock wave between

the freestream and the attachment line). These values are all interpolated from the CFL3D solution.

The linearized system of the boundary layer equations are solved using a fourth-order accurate Pad6

formula scheme in the wall normal direction. Further details concerning BL3D can be found in Iyer

(refs. 91 and 96).

2.2.3.2 Application of CFL3D and BL3D to the Swept Cylinder Case

CFL3D computational grids were constructed by first generating a two-dimensional volume grid

from GRIDGEN (ref. 103). The three-dimensional grid was then formed by stacking these two-

dimensional "slices" in the spanwise direction at the appropriate leading edge sweep angle. Note that

this results in a coordinate system that is not aligned with the coordinate system defined in figure 2-2.

This process had already been carried out by Iyer in support of the experiments by Creel (refs. 65-67)

and computational grids existed for 45 °, 60 °, and 76 ° swept cylinders. A grid convergence study

was undertaken at that time (undocumented) which resulted in the following dimensions. The

CFL3D grid was composed of two blocks to form a C-H topology and is shown in figures 2-3

and 2-4. Block 1 (fig. 2-3) was a grid that wrapped around the cylinder surface and extended out into

the mean flow in all three directions. Block 2 was an inner grid that was superimposed on block 1 in

order to allow flow through the space just upstream of the cylinder tip (fig. 2-4). This was required

to fully capture the tip flowfield correctly. Block 1 consisted of 65 points in the i direction, 129 points

in the j direction, and 65 points in the k direction. Block 2 consisted of 9 points in the i direction,

93 points in the j direction, and 37 points in the k direction. A point of note here is that the experi-

ments conducted by Creel were with cylinders that had an elliptical afterbody in order to reduce the

possibility of wake interference effects. This elliptical shape is reproduced in these grids. However,
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flow parametersof interestarealongtheattachmentline, andtheeffectof theafterbodyshapewas
deemednegligibleon theseresultsasafirst approximation.

TheCFL3D codewasoperatedin Eulermode;i.e.,viscousandturbulentstresseswereignored.
Flux differencesplittingwasusedfor the60° and76° sweptcylinders(subsonicleadingedges)while
flux vectorsplittingwasusedfor the45° case(supersonicleadingedge).

TheBL3D grid did notcovertheentiresurfaceof thecylinder,butwasmodifiedin orderto
calculatejust theattachment-lineparametersof interest;i.e.,it didnotextendin thechordwise
direction.TheBL3D grid consistedof 81pointsin thewall normaldirectionand52pointsin the
spanwisedirectionalongtheattachmentline.Themeanflow solutiongeneratedby CFL3D for the
first five spanwisestationsnearthetip wereignoredsincetheflow therewasconsideredcomplex.
Subsequently,theboundarylayercalculationswereinitiatedjust downstreamof thetip.

Both of thesecodeswererunon theNumericalAerodynamicSimulation(NAS)CrayC-90
computerat AmesResearchcenterin batchmode.CFL3Drunsneverexceededthe30Mw memory
and10,000CPUsecondtimelimits setfor batchjob submissions.PLOT3Doutputof theCFL3D
meanflow solutionwassentto anSGIPersonalIris workstationfor visualizationof thebow shock
waveusingFAST software(ref. 104).

2.2.3.3 Swept Cylinder Mean Flow Conditions at Three Sweep Angles

CFL3D and BL3D were used to calculate the mean flow, achievable R, and boundary layer

parameters for 45 °, 60 °, and 76 ° swept cylinders. Figure 2-5 shows the R distribution for these three

sweep angles at Re_, = 3.4 x 106/ft. As can be seen, the 76 ° sweep angle produces the largest value

of R of just over 700, which was estimated to approach that of an HSCT aircraft. BL3D was then

applied to these three sweep angles for an adiabatic wall condition. Figure 2-6 shows that the

boundary layer thickness increases with sweep angle. This is an important consideration since any

experimental stability analysis would undoubtedly rely upon a physical probing of the boundary layer

which would be made easier if the layer was as thick as possible. However, at only 8.5 to 9 thousands

of an inch, the 76 ° boundary layer is still only two and a half times the thickness of a human hair.

Based on this preliminary design process, the 76 ° sweep angle was chosen. This last piece of

information completed the design of the experimental configuration and parameters. The selected

geometry consisted of a forward swept circular cylinder of 1.6 inch diameter, mounted from the top of

the wind tunnel test section in the centerline vertical plane, swept at 76 ° to a Mach 1.6 freestream, with

the apex aligned with the streamwise flow. Note that this final configuration closely resembles that of

the Tu-144 inboard wing leading edge region in supersonic cruise, as shown in figure 2-1. Therefore,

the information gained from this investigation will be typical of existing and future supersonic flight
vehicles.
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2.3 CFD Calculations for 76 ° Swept Cylinder

m m

The CFL3D generated R and R, distributions along the 76" swept attachment line at two

freestream conditions are shown in figure 2-7. These freestream conditions correspond to typical

operating limits of the Mach 1.6 wind tunnel. Therefore, the values of R and R, represent the

maximum and minimum experimentally obtainable values. Note that the model can attain an R in

excess of 700 at large Reo.. This is a very large value since most aircraft in service can attain an R

around 300, and a Boeing 747 can attain values of R up to 600. Also note that even at 76 ° a distance

of at least two diameters in length is required before the attachment-line boundary layer is near swept-

infinite conditions.

The CFL3D Cp distribution along the attachment line for a Mach 1.6 freestream flow is shown

in figure 2-8. As can be seen, the finite length model produces a favorable pressure gradient over the

first four diameters length from the tip, and tends to asymptote to the swept-infinite value of 0.061.

Entropy swallowing effects can be addressed by examining the attachment-line boundary layer edge

Mach number ( M e). Figure 2-9 shows that the local Mach number asymptotes within three diameters

distance from the tip, thus suggesting that the effect of the tip configuration is such as to minimize the

entropy swallowing to this region. Visualization of the bow shock wave was undertaken using FAST

software. Figure 2-10 shows the density plotted in the center plane. The bow shock wave is clearly

seen and appears to be attached to the cylinder's apex.

BL3D was run with an adiabatic wall condition to predict the boundary layer parameters.

Figure 2-11 shows one such plot of the viscous length scale 77 and boundary layer thickness _ along

the attachment line, again at the two ends of the operating spectrum. Within two diameters' distance

from the tip, the boundary layer thickness is seen to approximate a near-constant value. In order to

probe these thin layers and measure high frequencies, very small instruments would be required, such

as hot-wire anemometers. Based on this preliminary CFD analysis, work began in designing a suita-

ble hot wire probe (see Chapter 3). Figure 2-12 shows the wall temperature distribution along the

attachment line at Reoo = 2.4 × 106/ft (T O = 20 ° F).

Every parameter studied suggested that a spanwise-varying flowfield existed in the apex region of

the cylinder. It was decided that no trip wires or hot wires should be placed in this area during the

experiment.
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Mach No. > 1.

Figure 2- I. Leading edge of a supersonic aircraft may be modeled as a swept cylinder.

Moo, poo Bow shock__

T_ _ 2 _ _ Cylinder

Figure 2-2. Semi-infinite circular cylinder in supersonic flow.
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k index is in stream direction.

Every fourth point in i,j,k shown.

I = 9 and k = 1 planes shown.

Note: i,j,k not aligned with physical coordinate system defined in figure 2-2.

Figure 2-3. CFL3D block 1 grid fitted to swept cylinder with elliptical afterbody.
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Every second point in i and every fourth point in j,k shown.

I = 1 and k : 1 planes shown.

Figure 2-4. Enlarged view of CFL3D grid in cylinder apex area to show block 2.
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Figure 2-5. R along the 45 °, 60°, and 76 ° attachment lines at Reoo = 3.4 x 106/ft as predicted

by CFL3D.

IO I......... ! ................7..............--:.............................:.........

I

GO0] _: '-!_ 60 Degree

6 ........ :..............

__xx×xkxx.×× ×××x× x x >5 45 Degree

4 ! _. i i

0 1 2 3 4 5 6

),ID

Figure 2-6. 5 along the 45 °, 60 °, and 76 ° attachment lines at Reoo = 3.4 x 106/ft as predicted

by BL3D.
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Figure 2-8. CFL3D Cp distribution along the 76 ° attachment line.
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Figure 2-9. CFL3D M e distribution along the 76" attachment line.

Figure 2-10. FAST visualization of bow shock wave.
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Figure 2-12. BL3D wall temperature distribution at Reoo = 2.4 x 106/ft (T O = 20 ° F).
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3. EXPERIMENTAL APPARATUS AND PRELIMINARY TESTS

3.1 Fourier Analyzer

Dynamic signal analyses for the hot-wire, pressure transducer, and accelerometer signals were

performed using a Tektronix 2642A Fourier analyzer system. The Tektronix 2642A can sample four

input channels at up to 512 kHz with 16-bit resolution, and it provided averaged 4096-point real time

fast Fourier transforms (FFTs), data capture, and display. Most of the signals were captured using a

Hanning window and anti-alias filtering, with 20 FFTs averaged for each power spectrum. High and

low pass filters were usually set at 250 Hz and 100 kHz, respectively. All data were then collected

onto a PC computer for data archiving, postprocessing, and data presentation.

3.2 Constant Temperature Anemometer Hot-Wire Systems

The constant temperature anemometer (CTA) hot-wire system was the primary diagnostic tool for

detection of disturbances in the swept cylinder boundary layer. The hot-wire system was also used to

detect disturbances in the test section freestream flow. The underlying principle of operation was the

same for both cases, although the probe design and method of operation were different.

The hot-wire anemometer has been used extensively as a flow diagnostic tool, primarily for

subsonic speeds. Any instrument that physically probes a flow has to be comparatively small so as

not to induce any artificial disturbances into the flow. The hot wire is ideally suited for this purpose

since it combines smallness of size with potentially high frequency response. Probe design, therefore,

is a key issue in the successful application of this technique. Also of importance is the attainment of

high frequency response, especially in supersonic flow. This is an important consideration since the

frequencies of the boundary layer disturbances tend to be in the 50-100 kHz range at low supersonic

Mach number (ref. 26).

A hot-wire anemometer is an electric device which passes an electric current through a fine

filament which is exposed to the flow. The filament consists of a material which possesses a tempera-

ture coefficient of resistivity; i.e., as the temperature changes, so also does the resistance and Joule

heating. The variation of resistance is used to generate signals which are related to the flow velocity or

temperature. The instrument is therefore a thermal transducer which is capable of measuring instan-

taneous velocities and/or temperatures. In supersonic flow, however, the introduction of compressi-

bility causes the wire to respond to fluctuations in mass flux and total temperature.

3.2.1 Theory of Operation

In the CTA mode of operation, the filament is placed in a Wheatstone bridge and a feedback

amplifier is used to maintain the wire at very nearly constant resistance (and hence temperature).

Fluctuations in the cooling of the filament cause fluctuations in the wire current which lead to voltage

fluctuations which are measured at the top of the bridge. For CTA units, the wire current increases for

increases in velocity (mass flux) and decreases in (total) temperature.
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The maincomponentsof aWheatstonebridgeareshownin figure 3-1.Theresistorsforming the
upperhalf of theWheatstonebridgedefinethecross-bridgeratio,i.e., R c /R a =10, which is typical.

R b is used to set the resistance of the hot-wire filament, and hence its overheat ratio ('r). "t" is defined

as "t"- (Zwire - Tr)] Z0, where Zwire is the wire temperature and Tr is the recovery temperature

(ref. 105). The overheat ratio was also interpreted as z -= (Rwire - Ramb)/Ram b, where Rwire and

Ram b are the hot and ambient wire resistances, respectively.

If the bridge is in 10:1 configuration, R b is usually a dial resistor, and a variable inductor, Lb , is

also used to compensate for the inductance in the hot-wire probe and cable. If the bridge is in 1:1

(symmetric bridge) mode, then R b is replaced with a length of cable that is identical to that used for

the hot-wire probe, and a suitable metal film resistor.

Care was also taken to measure the resistances of probes and cables with a bridge circuit, since a

voltmeter would pass a small current through the device and hence raise its resistance reading.

3.2.2 Probe Designs

Two boundary layer hot-wire probes and a single freestream hot-wire probe were used in this

investigation.

3.2.2.1 Freestream

The freestream probe consisted of a bare 5.0 l.tm tungsten hot wire spot-welded to two stainless

steel needles. The needles were attached to the end of a rod that had been bent so as to point upstream.

The rod was then fed through a side window of the wind tunnel test section and clamped into a

manual traverse mechanism. The traverse had a 5 inch range, and so traverses were usually made

from both wind tunnel side walls in order to measure the freestream disturbance field. A 5 m length of

RG-58 coaxial cable connected the probe to a Disa 55M 10 (10:1) constant temperature anemometer.

3.2.2.2 Model Boundary Layer

Two probe designs were used to detect disturbances in the swept cylinder boundary layer. The

most successful was a probe based on a subsonic design (known as the Mark 1). A probe based on

a design by Laufer and developed by Kendall was also used, although with less success (Mark 2

design). Both wires had a number of common features, including hot-wire element, method of

attachment of the probe body to the model, and CTA units used. From the outset, it was decided that

the hot-wire probes should be attached to the cylinder surface to reduce the possibility of vibration that

could possibly lead to wire breakages.

Initial tests conducted in the freestream using a 5 _tm tungsten wire and the Ames Fluid

Mechanics Laboratory (FML) CTA unit yielded a top frequency of only 20-25 kHz. Since the

anticipated frequencies of the boundary layer disturbances were expected to be much higher, it was

decided to use 2.5 _tm tungsten wire. The wires were copper plated, and an active length of 0.5 mm
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(aspectratioof 200)wasproducedby acid-etchingthecopper.Copperplatingwaspreferredoverbare
tungstensincethecopperactedasextrastructuralsupport.Direct spotweldingof baretungstenwire to
thehot-wireprobeneedleswasdiscardedsincethepresenceof theneedleswould influencethecooling
rateof thehotwire throughendconductioneffects.Sincetheboundarylayerwaspredictedto be
0.009inchthick,it wasinitially desiredtoplacethehotwire atapproximately0.005inchoff of the
cylindersurface.Wirebreakagesatthisheight,however,laterforcedthewireto alwaysbesetat
0.010inch.The wire height above the cylinder surface in a wind-off condition was set by placing the

probe body on a dummy cylinder of 1.6 inch diameter and measuring the distance with an inspection

microscope in the Ames Calibration Laboratory. After positioning, the probe assembly was then

carefully transferred to the cylinder in the wind tunnel test section. An attempt was made to use a

telescope to measure the height of the hot wire above the cylinder surface. This was made impossible,

however, by a high level of vibration in the observed image. It was found that the vibration persisted

even with the tunnel and compressor tunnel off. When the compressor came on line, the vibration

level increased. It was therefore believed that this unsteadiness entered the telescope via floor vibration

and the tripod holding the telescope, and was not originating at the model. (The test section is struc-

turally insulated from the downstream portion of the tunnel to prevent structural vibration problems

such as this.) Further work is required to accurately determine the hot-wire height.

Both probe designs were positioned from y = 6 to 8 inches ( y� D = 3.75 to 5.00) from the apex

along the cylinder utilizing wedge-shaped support blocks. A compromise had to made in the angle of

this support; a thin wedge was desired to accommodate an attached shock wave, but this decreased the

chordwise dimension that the support block could have on the cylinder. The bottom of the support

blocks were covered by a Teflon sheet to protect the polished cylinder surface. The hot-wire support

blocks were attached to the cylinder with plastic tie wraps. This arrangement provided a stable fixture

only if the ties went around a circular cross section of the cylinder. Placing the support block forward

of y� D = 3.75 resulted in a noncircular cross section and hence a loose fixture. A level was used to

position the wires to within 0.1 ° in the chordwise direction. Initial testing used tape to secure the hot-

wire leads to the model surface, but these bubbled and lost their adhesiveness with increasing surface

temperature. Plastic ties were then used and found to be much better.

The most successful probe, the Mark 1, was based on a subsonic design that was characterized by

long (5.0 mm) tapered needles. The probe was held at a 10° angle to the attachment line by a support

block with a set screw (figs. 3-2 and 3-3).

The Mark 2 design used a horizontal razor blade with short-length, thin needles made from

jewelers' broaches. This was joined to a center support piece which was slotted into the middle of

the support block, and the complete assembly was held together by two set screws (figs. 3-4 and 3-5).

This design suffered from numerous wire breakages, the cause of which was never realized. The

design also had an unfortunate characteristic in that the harmonics of the fundamental frequency of the

needles occurred at exactly the frequencies of the boundary layer disturbances, whereas the subsonic

design had harmonics at very low frequencies.

2.5 and 3.8 gm diameter wires made from platinum-rhodium (10%) were also tried using the

Mark 2 design. However, the tungsten wires were preferred due to their strength and higher coefficient

of resistivity.
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All hot-wire filamentsweremadewith aslight(0.001inch)bowin them.Postmortems,usinga
microscope,werealwayscarriedoutafterwire breakages.Wiresbrokenin themiddlewereusually
representativeof too muchoverheat.A particleimpactwouldremovethewholesegmentof etched
wire.Stressesin thewire andprongswouldpull oneendof theetched-wirefilamentawayfrom the
unetchedpart.

A concernwasraisedthatthehot-wireleadsandaluminumprobesupportbodiesweredirectly
mountedon theheatedcylindersurfaceandwouldthereforebeheated.Thiswouldincreasethebridge
resistanceandhenceleadto breakagesthroughtoomuchoverheat.Testsweresubsequentlyperformed
onprobeswith thehot-wireneedlesshortedout.Thebridgeresistanceinitially fell asthetunnelcooled
down,but did not increasewith surfaceheating.Thisprovedthatthesurfacetemperaturewasnotas
importantasair temperature.

Anotherinitial concernwasthatelectromagneticinterference(e.m.i.)wouldbegeneratedby the
electricalsupplycablespassingcloselyto thehot-wireleadthroughthesameinstrumentaccesshole
into thecylinder.Thiseffectwasmeasuredto beappreciable,andaseparateaccessholethroughthe
wind tunnelwall wasmadespecificallyfor thehot-wirelead.Thisreducedthee.m.i,effectto an
immeasurableamount.

In orderto movethehot-wireprobebackalongthemodelsoasto captureatransitionfront, a
simpletraversesystemwasdevised.Teflon-coatedelectricalwireswerefeedthroughto thetest
sectionfrom theoutsideof thetunnelandwrappedaroundtheplastictiessecuringthehot-wire
supportblock to thecylinder.Theelectricalwireswerethensecuredto thesurfaceof thecylinderwith
plasticties,soasto allow freemovementof thewiresalongthemodel.Alternatepullingof thetopand
bottomwiresresultedin thesupportblock"inching"backwardalongthemodel.Extraholeswere
drilled into thetestsectionwindowblankfor theelectricalwiresto passthrough,andtheseholeshad
theiredgesroundedsoasnot tocut thewires.Marksweremadeon thecylinderat 1/4inch intervals
fromy = 6 to y = 9 inch, and spanwise position was indicated by the trailing edge of the most rear-

ward plastic tie aligning with one of these marks. Tension had to be maintained in these electrical wires

at all times so that they did not get sucked into the tunnel. Screw down clamps held the loose ends of
the wires on the outside of the tunnel.

Two hot wires were used simultaneously to investigate the nature of the boundary layers in the

chordwise direction as well as the attachment line. However, with the chordwise hot wire at 0 = 40 °

it was found that both wires exhibited an apparent turbulent signal. Schlieren photography confirmed

that the reflected bow shock wave was well behind the position of the probes. This was immediately

suspect, since previous tests with the attachment-line hot wire alone had shown that the attachment-

line signal should have been laminar. Removing the chordwise hot wire from the cylinder surface

immediately returned the attachment-line signal to laminar. It was therefore concluded that the hot-

wire support blocks created enough disturbances to be "felt" by the other wire. One possibility was

that the 40 ° wire was yawed enough to produce a shock wave strong enough to separate the boundary

layer on the attachment-line probe and produce a subsonic region with some upstream influence. It

was decided not to use both wires together. This also meant that the wave angle of the assumed

oblique disturbances in the attachment-line boundary layer could not be explored using the wedge-

shaped hot-wire support blocks. Further work is required to develop a two hot-wire support mount
with minimal interference effects.
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3.2.3 Frequency Response Issues

The frequency response of the hot-wire system was indicated by the wire's response to a square

wave signal input as measured on an oscilloscope trace (fig. 3-6). This method was a quick technique

of estimating the response of the wire system, and was in close agreement with the standard 3 dB

system roll-off definition.

The frequency response of the hot-wire system depends on a number of parameters, including the

probe design, the CTA unit employed, and operating conditions. Several bench tests were made in an

effort to obtain a high wind-off frequency response of a CTA system.

Initial investigations utilized the FML CTA unit which incorporates a 10:1 bridge and gives a

frequency response of approximately 25 kHz in low speed flow. After tuning both the feedback and

output amplifier circuits to give a flat response out past 200 kHz, it was found that the maximum

response in a wind-off condition remained at 25 kHz with 0.7 overheat ratio. This anemometer was

then converted to a symmetric bridge, and a selection of variable inductors were used in order to

match the inductance of the 5 m length of cable and hot-wire probe. This produced no improvement,

however, possibly due to the value of the resistors in the bridge. Attempts to further increase the

response of the FML CTA were not pursued.

The Dantec 55M 12 unit was then tested. The symmetric bridge design required an identical length

of RG-58 cable in the resistance setting circuit, and a range of metal film resistors to set overheat

(metal film to keep inductance to a minimum). Multiple resistance settings were achieved by placing

up to three metal film resistors in parallel. This immediately obtained wind-off responses in excess of

60 kHz with a 0.8 overheat, and exceeded 200 kHz when placed in the supersonic freestream of the
tunnel.

Retuning of the wire was always necessary after the air flow was turned on, and was always done

with the boundary layer laminar. Frequency response increased with the Reynolds number and over-

heat ratio. In order to obtain maximum response at each Reynolds number, the wire would need to be

retuned. In practice, however, the wire was tuned at just one Reynolds number and overheat ratio due

to the small Reynolds number range of these tests.

Other frequency-maximizing techniques included using low inductance cables that were as short as

possible with minimal connections. In fact, a continuous cable was used from the outside of the test

section to the CTA unit.

3.2.4 Data Gathering

The output from the hot wires was directed to the Tektronix 2642A Fourier analyzer system. Data

were recorded for a time span that was large compared to the time span associated with the boundary

layer (due to capturing bursts propagating down the attachment line), i.e.,

8
T >> --

U

37



As _ = 0.01inch and U = 1500 ft/sec (approximately), then T > 4.4 x 10--6 seconds. The data

recording time base was set to 0.199814 x 10--3 seconds, i.e., 450 times larger.

3.2.5 Calibration

3.2.5.1 Test Section Freestream

The following argument follows the arguments of Izsak (ref. 106) and Rose (ref. 107). Voltage

fluctuations in the output signal can be related to property variations by the following relation:

-E= Su + + (3-1)

The problem of determining the behavior of hot wires can thus be reduced to determining the behavior

of the sensitivity coefficients S u , Sp, and STo. It can be shown that when operating at a high overheat

ratio, S u = Sp and STo << S u . Therefore, equation (3-1) reduces to:

p

E-- = Sp u (pu) (3-2)
£ pa

where Spu replaces So and S u . Differentiating equation (3-2):

Copu O[ln(E)] (3-3)
- a[ln(pu)]

Thus, the slope of a plot of In(E) versus In(_-) would yield Spu, where the mass flux is obtained

from the isentropic relations:

Rr0

Rearranging equation (3-2):

p

(pu__L=e_Z'
_g ES pu

Since the objective is to determine the turbulence level, UYrms/_', simplifying assumptions are

required. Consider the definition of stagnation temperature (ref. 108):

(3-4)
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Cpr0 = --+
2

Log differentiating, introducing Mach number and gas law:

CS-j ;go =(7-1)M2-+u p p
(3-5)

We then assume that there are two types of disturbances, sound waves (irrotational) and incompres-

sible, rotational turbulence. If sound were the only disturbance, we could reasonably use the isentropic

assumption. If T _<0.01, velocity fluctuations will have a Mach number of approximately 0.01 to

0.02, even for moderate supersonic mean flow Mach numbers. Therefore, this assumption ( T _<0.01)

would give low Mach number turbulence carried along by supersonic flow, and would itself be close

to an incompressible, turbulent pattern.

Therefore,

We can reasonably assume that p'l_ << u'/ff and so we can neglect p'l_ in equation (3-5). This

now allows us to obtain density and velocity fluctuations separately. Note that TO may still fluctuate,

because the turbulent pattern carries along a temperature "spottiness" because of its past history of

dissipation.

Therefore, applying:

P

m" (pu) p" u'
--

to equation (3-5) gives:

t

u

u

1 [1 + ("_---[)M2 ] ( Td ']

l+(y-1)M2 ('_") + _;('-y--1)'i'_] [.'_"o)

If total temperature fluctuations are now ignored:

P

u

P

1 (o.)
1+(7-1) M2 Pu-
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Thereforeequation(3-4)becomes:

I

(pu) E' '

implying:

u' E" 1

"E ESou [1 + (_,- 1)M 2]

Hence, noting the change to root mean square (rms) fluctuation values:

_U 2 Erm S

Tu - _ = (3-6)
U OlnE

E[ 0 _n_)l[X + (_ - 1)Moo2 ]

This neglects both pressure and total temperature fluctuations.

The wire was operated at the highest practical overheat ratio of 0.7 in order to reduce the sensitivity

of the wire to temperature fluctuations. The logarithmic derivative was found by recording the mass

flux and d.c. hot-wire signal as the stagnation pressure of the tunnel was varied. This method yielded a

value of Tu which was in very close agreement to that obtained following the method of Smits et al.

(ref. 109).

3.2.5.2 Swept Cylinder Boundary Layer

No calibration of the swept cylinder boundary layer hot wire was attempted for several reasons.

First, the Nu = Nu(Re) relationship that governs hot-wires becomes Nu = Nu(Re, M) for Mach

numbers below 1.2. This would be reached at y� _ = 0.6 in the attachment-line boundary layer, as

predicted by BL3D. Second, the Reynolds range of the tunnel is relatively small, and calibration of the

wire with minimum freestream Reynolds number would be equivalent to y� _ = 0.6 in the boundary

layer with maximum freestream Reynolds number. Third, the total temperature distribution through

the boundary layer was unknown. And fourth, a calibration of a hot wire normally requires a pitot

tube, commonly made from a hypodermic needle. The smallest commercially available hypodermic

needle had an outer diameter of 0.004 inch, and so would not be able to provide the required resolution

through the 0.009 inch boundary layer.

Since the wires could not be calibrated, disturbance amplitudes were not obtainable. Quantitative

frequency spectra, however, could still be extracted from the recorded analog signals, and qualitative

information on the state of the boundary layer could be inferred from the nature of the time history, the

shape of the frequency spectra, and the rms value of the hot-wire signal.
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3.3 Pressure Transducer System

The Kulite pressure transducers were powered by high frequency response signal conditioners

(Dynamic 8000s with a 3 dB drop-off at 500 kHz). Freestream measurements of the pressure distur-

bances were made with a Kulite pressure transducer model XCS-062-15A (number 3643-5-708)

mounted in the linear traverse mechanism. No temperature compensation was used for this transducer

since the factory supplied calibration curve was outside of operational temperatures.

Disturbances (such as shock waves) were primarily evidenced by a change in the d.c. signal.

3.4 Mach 1.6 Quiet Wind Tunnel

3.4.1 General Description

Experiments were conducted in the Mach 1.6 Quiet Wind Tunnel in the FML. This unique facility,

described in references 110 and 111, provides low freestream turbulence and noise level, essential for

transition research, over a range of unit Reynolds numbers from 2.4 × 106/ft to 3.6 x 106/ft. The

distinctive features of the wind tunnel are a low-disturbance settling chamber, steady supersonic

diffuser flow and low structural vibration of the nozzle and test section walls. Furthermore, the tunnel

is designed to run continuously at unusually low stagnation pressures. The tunnel achieves this by

utilizing the FML compressor and a two-stage injector drive system, which results in a very unusual

layout, as shown in figure 3-7.

The test section is fed with regulated, unheated, dried air from the Ames 3000 psia supply. This

supply merely provides a source of air with a low dew point of about -50°F and does not drive the

tunnel. For Mach 1.6 operations, the stagnation pressure in the settling chamber ( P0 ) is variable up to

10.3 psia, which corresponds to a maximum flow rate of approximately 26 lb/sec with TO = 0°F. The

inlet air cools due to expansion, and causes the stagnation temperature in the settling chamber to drop

about 60°F below ambient. This large temperature drop stabilizes in the settling chamber after about

20 minutes of tunnel operation.

The settling chamber is equipped with pressure reduction elements, a series of flow straighteners

and flow conditioners, and vibration isolation from the support structure, as shown in figure 3-8. The

nozzle and contraction are fabricated as one component out of 606 l-T6 aluminum, and were hand

polished to give a surface finish better than a 10L standard (roughness height 10 microinches). Since

the settling chamber is square, the contraction ratio based on the throat dimensions is 6.2:1 vertically

and 2.45:1 horizontally, which combine to give an overall high contraction ratio of 15.25:1. (The

overall contraction ratio based on the test section dimensions is 12:1.) No boundary layer bleed valves

are fitted to the tunnel---quiet flow in the test section is achieved purely through the use of screens and

proper contouring of the three-dimensional nozzle. The dew point of the air supply was continuously

monitored with a Nyad Model 140 Hygrometer positioned in the settling chamber.

The test section is 8 inches high, 16 inches wide at its entrance, and 32 inches long. All round

optical access is made possible by 2.0 inch thick windows made of optical quality Schlieren glass. The

stabilization of test section stagnation temperature causes the upstream window to move with respect
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to thewindow frame,andgreatcareis exercisedtoensurethattheappropriateloadingis appliedto the
window sotheflow surfaceis smoothanddoesnot trip thetunnelboundarylayer.Thetestsection
floor andceilingdivergeatatotalangleof 0.5degreeto allow for boundarylayergrowthon all four
walls.Thesidewallsareparallel.Thetestsectionis cantileveredfromthenozzlecontraction,with the
downstreamendattachedto thesupersonicdiffuserbyarubberisolatorto preventconductionof
injectorvibrationinto thetestsectionandnozzlestructure.Modelsandinstrumentationcanbe
mountedin thetestsectionfrom windowblanksfitted in anyoneof four windowframes.Sincethe
tunneloperatesatsubatmosphericpressures,leakswereamajorconcernandgreatcarewasalways
exercisedto ensurethatwarm,moistair didnotpenetrateinto thetunnel.

Thewind tunnelis operatedusingan industrialtypecontrolsystemwith PCWindowsrunningon
anordinary486/33MHz computer(fig. 3-9).A real-timedisplayshowsinlet air parametersandthe
statusof controlvalves.Thetunnelstartandshutdownarehandledautomaticallyto preventcompres-
sorsurge.Only P0 is available to set tunnel operating conditions, and can generally be held to within

0.1 psia using a proportional with integral and derivative (PID) controller. Since a heater is not

installed to control stagnation temperature, TO varies with climatic variations and also during a run,

due to compressor pumps charging the high pressure air reservoir and hence doing work on the air.

The three compressor pumps with 3000 psia supply could deliver more than the 30 lb/sec that the

tunnel drew at high Reynolds number. However, most runs were made during periods in which only

two pumps were working, so the supply was only 18 lb/sec. Therefore, runs were started with a

maximum head of pressure in the relatively large reservoir and generally lasted about 1 to 2 hours,

before the supply pressure reached 2500 psia, at which point the tunnel was turned off so as not to risk

unstarting the tunnel with the model in the test section.

Two configuration changes were made to the wind tunnel over the time period during which these

tests were conducted: (1) The first stage of the pressure reduction system had 17 holes drilled in it so

as to increase the flow-through area by 5%. (2) Following a leak of water into the high pressure air

system, the tunnel was completely disassembled and cleaned; the opportunity was taken to replace the

Rigimesh linings in both the second and third stages of the pressure reduction system (fig. 3-8), and
this was found to lower the test section disturbance level.

3.4.2 Data Acquisition Systems for Pressures and Temperatures

Temperatures were measured with type-T (copper-constantan) thermocouples connected to a

THERM-ACQ unit by DIANACHART, Inc. The THERM-ACQ unit was controlled by a PC

computer and could simultaneously measure 48 channels with 16-bit accuracy. An isothermal cold

junction assembly ensured that all thermocouples were referenced to a common temperature. Data

were continuously displayed, and were recorded every 10 seconds.

Pressures that were specific to the control of the tunnel were measured by self-contained

industrial-type pressure transducers, and their signal was sent directly to the tunnel control computer.

Measured pressures from the test section and models were fed to a four-barrel Scanivalve unit. Each

barrel of the Scanivalve unit contained a 0--15 psia pressure transducer. All pressures measured with

this unit were referenced to atmospheric pressure. Each Scanivalve pressure transducer was powered
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by a highfrequencyresponsesignalconditioner(Dynamics8000with a3dB drop-off at 500kHz).
Thesignalconditionersallowedfor suitable"buck-and-gain"of theanalogsignalbeforebeingsentto
a 12-bitA/D boardin thedataacquisitioncomputer(CIO-AD16A/D boardby ComputerBoards,
Inc.).Theport positioningof theScanivalvebarrelswascontrolledbya ScanivalveSolenoid
ControllerCTLR2/S2-S6whichreceivedstepinputsignalsfrom thedataacquisitioncomputer.The
pressuretransducerswerecalibratedbeforeeverytestusingamanualvacuumpumpanda vertical
mercurymanometerboard.A straightline curvewasfitted to theresults.Absolutepressureswere
obtainedafternotingtheatmospheric(reference)pressure.

3.4.3 Low Disturbance Level Environment

The low disturbance, or "quiet," test section environment was first measured. This configuration

had smooth walls with no trips fitted to the walls. All window blank joins were fitted to be as smooth

as possible. Note that both total pressure and hot-wire signals include signal noise.

3.4.3.1 Total Pressure Fluctuations

For these traverses, the Kulite was positioned in the forward streamwise location such that the

head of the transducer was 1 inch aft of the nozzle/test section join. A flange on the rear of the Kulite

probe prevented data from being taken closer than 3.5 inches from the side walls. Mounting the

traverse from both side walls enabled most of the test section to be probed. Data were taken at both

low and high freestream Reynolds numbers. The signal noise was calculated by dividing the wind-off

rms pressure by the wind-on total pressure, and the maximum occurred at Re,o= 2.7 x 106/ft

(0.009%).

Figure 3-10 shows the test section pressure fluctuations (Prms/Ptotal) at this location. The low

disturbance level environment of the tunnel improved following the replacement of the Rigimesh

pressure reduction screens in stages two and three of the pressure reduction unit. In fact, the Rigimesh

screens had never been replaced since the tunnel fast became operational in 1994. Currently, the

consensus is that flow is "quiet" if the freestream is spatially and temporally uniform with acoustic
and convected disturbances (ratio of total pressure rms to total pressure, Prms/Ptotal) less than 0.1%

(refs. 110-112). Since the data are all well under this level and approaching that of the signal noise

level, the tunnel is indeed quiet in an acoustic sense.

The data shown in figure 3-10 for "after Rigimesh replacement" were taken both before and after

the transition tests were conducted, and represent over 66 data points. The repeatability of the data is

remarkable, and shows that the disturbance level did not change substantially with Reoo. Also, as far

as pressure fluctuations go, no degradation of the tunnel occurred during the transition testing.

3.4.3.2 Mass Flux Fluctuations

A 5 gm tungsten hot wire operating at an overheat ratio of 0.7 was used to obtain the freestream

fluctuation data shown in figure 3-11 (shown without noise signal removed). The turbulence intensity

was obtained following the method described in Section 3.2, and produced a value of 0.035% at the
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Thehotwire wasalsotraversedinto asidewall boundarylayer.It detecteda 1.0-1.5inch thick
layerthatwasdefinedby anincreasedobservationof "spots"(massflux or temperature)--astheprobe
wentin, it sawspotsfor longerpercentagesof thetime.Thethicknessandstateof thewall boundary
layersarecurrentlyunderinvestigation.

3.4.4 RaisedDisturbance Level Environment

In order to raise the disturbance level of the test section, 1/2 inch wide strips of size 80 grit

sandpaper (0.025 inch height) were stuck to upper and side walls of the tunnel using double-sided

tape. The upper wall trip was located such that its leading edge was 1.25 inches forward of the test

section/nozzle join, while the side trips were placed with their leading edges 6.25 inches forward of

the join. The shock waves generated by the trips passed in front of the model and did not interfere with

the attachment-line boundary layer. These trips were sufficient to cause turbulent boundary layers to

form on the tunnel walls, and in so doing, irradiate the test section with increased levels of primarily

acoustic noise.

3.4.4.1 Total Pressure Fluctuations

Figure 3-12 shows that tripping the tunnel walls significantly increased the rms pressure distur-

bance level of the freestream by approximately eight times. Figure 3-13 shows that this increase in

noise is broadband, with no particular frequency being selectively amplified. Therefore, the turbulent

boundary layer walls are effectively raising the overall "white noise" of the freestream.

3.4.4.2 Mass Flux Fluctuations

Because of time constraints, only half of the test section was traversed with the hot wire.

Figure 3-14 shows that the hot-wire fluctuations also increased as a result of the trips, but only by a

factor of two. This suggests that the trips primarily increase the pressure disturbance level of the
freestream.

3.5 Swept Cylinder Models

The design process described in Chapter 2 led to a forward swept circular cylinder of 1.6 inch

diameter, mounted from the top of the tunnel in a vertical plane, swept at 76 ° to the Mach 1.6 free-

stream with the apex aligned with the streamwise flow. The next task was to design a model that

would fit into the wind tunnel test section with these parameters.
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3.5.1 Positioning of the Models in the Test Section

The usable test length of any cylinder model would be ended by a bow shock wave reflecting off

the upper tunnel wall and striking the model. A slight shock was also anticipated to come off the

cylinder apex downward, reflecting off the lower wall and later striking the model. As a result, there

would an optimum vertical height at which the two reflected shocks would intersect the cylinder at one

spanwise location. The cylinder design would therefore have to incorporate a mechanism for altering

the vertical height of the model to obtain this optimum position, provide access for installing the

instrumentation, provide a means for attachment to the tunnel wall, and, of course, be simple and

cheap to manufacture.

An initial idea for vertical movement employed a circular cylinder. This idea was discarded,

however, since the vertical cylinder would have a detached bow shock wave. The standoff distance

would increase rapidly as the Mach number decreased toward unity, thus influencing more of the

precious spanwise test length of the cylinder. Instead, wedge-shaped blocks were chosen to provide

the vertical spacing. The wedge spacer was designed with a 11.3 ° half angle so as to have an attached

shock wave up to a Mach number of 1.47, according to two-dimensional theory. The wedge spacer

was made from a fully cured polyurethane polymer in an effort to thermally insulate the model from

the warmer wind tunnel wails. The bow shock angle obtained from the CFL3D solution was used to

calculate the optimum vertical position and hence the thickness of the wedge spacer. For the chosen

76 ° swept cylinder, the apex was to be 2.5 inches from the bottom tunnel wall, thus giving a maxi-

mum usable spanwise test length of approximately 8 inches and a wedge height of 1.5 inches. The test

section height is 8 inches, implying a cylinder model 16 inches in length. The model was mounted

from a specially constructed upper window blank, as shown in figure 3-15. A 1/2 inch and a 3/8 inch

bolt secured the cylinder and the wedge spacer to the window blank, and a third 11/16 inch hole just

upstream of the bolts was provided for instrumentation leads to pass from the model interior to the

laboratory.

The test section of the Mach 1.6 wind tunnel does contain slight disturbances. Earlier tunnel tests

using Schlieren photography revealed a slight shock/expansion wave emanating from the joint

between the upper window blank and the window frame. This disturbance moves across the working

section at the Mach angle. Pressure tap measurements taken along the leading edge of an F-16XL

model confirmed that this did not result in a noticeable pressure jump. In order to assure quiet flow, it

was decided to conduct the experiments in a forward streamwise position. This placed the apex of the

cylinder in the nozzle, but downstream of the last expansion wave so as to be in a truly Mach 1.6 flow

(fig. 3-16). The disadvantage of this position was that only the rear of the cylinder was viewable

through the side windows. In order to discern the nature of the bow shock wave at the apex, it was

decided to also have an aft streamwise testing position, 6 inches downstream of the forward position,

which would enable photography of the apex area. These criteria positioned the bolt-hole pattern

necessary in the test section roof for attachment of the model (fig. 3-17).
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3.5.2 Swept Cylinder Load Analysis

Load calculations were carried out as part of the FML's Test Readiness Review policy. These

design calculations are shown in Appendix A. Aluminum 6061-T6 was chosen as the material for its

strength and its ability to aid in quick thermal stabilization of the model wall temperatures.

3.5.3 The Need for Three Swept Cylinder Models

As this investigation progressed, it became apparent that three swept cylinder models, identical

in external geometry and dimensions, would be required in order to meet all the experimental

requirements.

First, a model with a smooth (less than 10 microinches) surface was required for the transition

experiments. This led to a hollow model that would generate near-adiabatic wall temperatures. This

model could also be used for gross contamination studies, in which trip wires are affixed to the

surface. The model became known as the "adiabatic cylinder."

In order to obtain the chordwise velocity gradient, which is a necessary component of R, the

chordwise pressure gradient would need to be acquired. In previous swept cylinder experiments
(with the exception those in ref. 63) the relevant R values were obtained from CFD calculations or

empirical calculations. This was deemed unacceptable, and a truly experimentally derived value for

R was required. Since pressure tap orifices would cast off disturbances into the boundary layer flow,

taps could not be installed in the adiabatic cylinder. A "cylinder with pressure taps" was therefore

required to obtain the cylinder's pressure distribution.

Finally, if boundary layer disturbances could not be observed with the adiabatic cylinder, surface

heating would be introduced. Requiring a solid interior, this model would be different again from the

adiabatic cylinder, while still retaining the identical external geometry. This model became known as

the "internally heated cylinder."

3.5.4 Adiabatic Cylinder

The adiabatic cylinder was machined from a solid piece of aluminum 606 l-T6, and had a wall

thickness of nominally 1/8 inch. The surface of the cylinder was highly polished and finished to below

10 microinches rms. Five copper-constantan (type-T) thermocouples (24 gage) were placed at equal

intervals along the attachment line from 3.7 inches to 11.7 inches from the apex. These were placed in

the wall at 0.012 inch from the external flow surface. Great care was exercised so that no part of the

exterior surface was broken while machining. It would have useful to have an access panel on the back

face of the model running the length of the cylinder, to aid in thermocouple installation. Cost limita-

tions and the possibility of warpage due to machining, however, limited the access to 1/2 inch

diameter holes which were later plugged. The apex region of the cylinder was welded to seal the

model and machined to dimensions. Two 3/8 inch diameter holes were placed on the back face of the

model to allow for quick depressurization during the wind tunnel startup. After all machining was
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completed,anx-rayof themodelwastakento ensurethattheplacementof thethermocoupleswas
correct.The designdrawingof theadiabaticcylindermodelis shownin figure3-18.

Thermocoupleresponseto changesin freestreamtotal temperaturewasrapid,andthermal
equilibriumof themodelwasestablishedin amatterof afew minutesaftertunnelstart.Thewall
temperaturealongtheattachmentlinewasalmostuniform,with themaximumdifferencebetweenany
twothermocouplesbeingof theorder1°F.Theseresultsarein closeagreementwith thepredicted
values(fig. 3-19).Basedonawall temperatureof 0°Fandastagnationtemperatureof 20°F,the
recoveryfactorwas0.844(near-laminar).

After 20 minutes of running the tunnel, it was found that the wall temperatures began to rise

slightly, which was attributed to rising total temperature. It was realized that the high pressure air

compressor pumps were continually operating and were thus doing work on the relatively large high

pressure air reservoir which in turn slowly raised the stagnation temperature. A point of note here is

that the total temperature measurement was made near the settling chamber wall and was therefore

influenced by the temperature of the tunnel wall. A slight (less than 1°F) temperature difference was

known to exist across the cross section of the tunnel, implying that the total temperature being

measured was not exactly the same as the total temperature at the apex of the model. Ideally, a

removable, independent measurement of the freestream total temperature behind the screens in front

of the contraction was desired. A total temperature probe was placed in the Mach 1.6 test section, but

this test was inclusive since the probe's own recovery factor could not be determined.

3.5.5 Cylinder with Pressure Taps

In order to obtain accurate values of R and the viscous length scale 7/ at each spanwise location

for comparison with CFD, it was decided not to rely upon an empirical estimate of (dU e / dX)x=0,

such as given by the modified Newtonian pressure distribution, but to determine it directly from

measured pressures. Because of budget constraints, a cylinder equipped with pressure taps

(fig. 3-20) was machined in the FML workshop by the author over a four week period. Details of

the model machining can be found in Appendix B. Upon completion of machining, the model was

taken to the Ames Research Center Calibration Laboratory for accurate determination of pressure tap

hole placement, the results of which are listed in table 3-1. Measurements from an initial test of the

pressure model produced unacceptable results, and led to modifications of the acquisition system.

Having obtained satisfactory surface pressures from a second test, the task was then to obtain

chordwise velocities and hence R and 77. This required the boundary layer edge temperature, and

an analysis was undertaken to assure that a correct value was used. Curve fitting analyses were also

undertaken to assure that the velocity distribution obtained was as accurate as possible.

3.5.5.1 Design of the Pressure-Tapped Cylinder

The spanwise locations of the pressure taps were chosen to match the spanwise locations of the

thermocouples in the adiabatic cylinder model. The taps were arranged in chordwise rows so as to be

perpendicular to the cylinder's attachment line, as shown in figure 3-21. At each spanwise station,

0.020 inch internal diameter taps were placed at 10 ° intervals from -50" to +50 ° in the chordwise
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direction,with areducedconcentrationof tapsbeingplaceddownstreamof thepredictedimpact
locationof thereflectedbow shockwave,givingatotalof 62 taps.At 3.7,5.7,and7.7inchesfrom the
apex,afull chordarrayof 11tapswasusedto definethechordwisevelocityprofile,butat 2.7,4.7,
and6.7inches,only six tapswereusedina half chordarray.Thiswasdonesoasto minimizethe
numberof tapsrequired,asit wasthoughtthatthehalf chordarraywouldbesufficientto definethe
velocityprofile. After initial testing, it was decided to place the taps in full chord arrays, as shown in

figure 3-22. Essentially, those taps positioned aft of the reflected bow shock wave impact position

were moved forward to complete the full array pattern, with four additional taps being made to bring

the total to 66 taps.

3.5.5.2 Surface Pressure Measuring Apparatus---First Test

During initial testing, the plastic Tygon tubing from the pressure taps was connected directly to the

tunnel pressure measuring Scanivalve unit described in Section 3.4.2. Since the pressure transducers

were housed directly within each barrel, only a small amount of time was required after port selection

for the pressures to stabilize and measurements to be taken. A constraining factor, however, was that

these transducers were referenced to atmospheric pressure and had non-optimal gain settings. One

count of the 12-bit A/D system was found to be equivalent to 0.006 psia which, although sufficient for

the majority of tunnel pressure measurements, was unsatisfactory for the resolution of differential

surface pressures.

3.5.5.3 Surface Pressures Obtained from First Test

The first entry of the pressure model produced results which were deemed unacceptable for

several reasons. First, the differential surface pressure between two ports was obtained by measuring

each surface pressure relative to atmospheric and then obtaining the difference. This difference of two

large numbers was inherently inaccurate and led to the acquisition of a differential pressure transducer.

The second issue concerned the resolution of the pressure transducers. It was found that curve fits

applied to the calculated chordwise velocity distribution exhibited repeatability errors that were traced

to insufficient resolution of pressure (pressures were required to 0.001 psia, but available resolution

was only 0.006 psia). Another issue concerned the use of four separate pressure transducers, each

with its own slightly different calibration. And last, it was recognized that the half chord array of

pressure ports were simply insufficient to properly define the chordwise distribution of pressure.

These reasons led to the modification of the pressure port hole pattern and the pressure data acquisition

system.

3.5.5.4 Surface Pressure Measuring Apparatus--Second Test

A number of changes to the pressure measuring system were made before the second test of the

pressure model. In order to ensure that the model was isolated from the outside of the tunnel, a

pressure-sealed box was placed over the mounting and instrumentation holes on top of the test section

(fig. 3-23). When the tunnel started, this box could be visibly seen to be "sucked down" over the

holes, forming an airtight seal. Plastic Tygon tubing from the pressure taps was then connected to

ports on the inside face of the box, and tubing connected to the outside face of the box transmitted the
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pressuresto asecondScanivalvesystemplacedunderthetestsectionof thetunnel.ThisScanivalve
systemwasseparatefrom theoneusedfor tunnelpressuremeasurements;theScanivalvebarrelsin
thissystemdid notcontainpressuretransducersandwereusedsolelyaspressureportselectors.

Themodelsurfacepressuresweresequentiallyappliedto onesideof a_-+0.5psiaMKS Baratron
type223Bdifferentialpressuretransducervia thenewScanivalvemechanism,with freestreampres-
sureappliedto theotherside.This transducerhadanaccuracyof_+0.0015psiawitharesolutionof
+0.00005 psia. Using a single common transducer instead of four separate ones reduced errors caused

by slightly different calibrations. Freestream pressure, however, was required to be referenced back to

atmospheric pressure. It was hoped to obtain a new transducer for this purpose coupled with a 16-bit

A/D system to increase resolution, but this was never realized, and one of the 0-15 psia transducers

from the tunnel pressure measuring Scanivalve system had to be used for this purpose. However, the

gain for this transducer was changed from the first test such that one count of the 12-bit A/D system

was equivalent to 0.0033 psia.

Since the 66 surface pressures were to be sequentially applied to a single transducer, and one

Scanivalve barrel had only 48 ports, two barrels were required to measure all pressures. Thus, a need

arose to switch between the two barrels. An initial piping and switching system was found to suffer

from a severe time lag. Closer examination of the switching valves and piping revealed that they had a

large internal volume in comparison to the volume in the pressure lines. After replacing the valves and

piping with smaller diameters, the time required for pressure stabilization before recording data was

reduced to 3 seconds. This could have been reduced even more by suitable reduction of piping

volume.

The tunnel was then found to exhibit a periodic oscillation in P0 of approximately 0.05 Hz,

which produced the same periodic oscillation in p,o and the model surface pressures, Pe" This was

attributed to non-optimal settings in the PID control system for the tunnel valve. Tests were conducted

to check for time lag between Pe and PO, but this was found to be negligible. The Baratron MKS

transducer could quite easily resolve this oscillation, but the Scanivalve transducers, being referenced

to atmospheric pressure, did not have sufficient resolution. Consequently, attempts to form a Cp,

which would normally have taken the unsteadiness into account, failed since Pe was measured as

oscillating and poo was not. The only course of action left, therefore, was to record the pressures over

long time periods and average the results. The three pressures of interest, P0, P_, and Pe - Po., were

therefore recorded by the A/D at 50 Hz (i.e., 16.7 Hz per channel) for 80 seconds, giving a total of

4000 samples over three channels (computer direct memory access buffer size limited the total time

period). These were then averaged to produce mean pressures and a mean value of Cp for each port.

3.5.5.5 Procedure to Obtain Accurate dU e/dx

The values of R and 77 are based on the chordwise velocity gradient, (dU e /dx)x=O. Therefore,

at each spanwise location, the chordwise distribution of velocity was required, which is based on

knowing the values of the boundary layer edge temperature and pressure at the attachment line ( PA

and Ta , respectively). Since pressure is assumed constant through the boundary layer, the value of
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PA would be equal to the experimentally measured pressure on the attachment line. However, since

the pressure taps were not exactly aligned with the attachment line, PA was obtained by fitting even

polynomial functions to the chordwise distribution of Pe and noting the pressure at 0 = 0 °. TA was

obtained by considering the streamline that crosses the bow shock wave and arrives at the point of

consideration. An analysis was undertaken of the correct bow shock wave angle to use. Throughout all

stages of these calculations, it was realized that R is very sensitive to (dU e / dX)x=0 and one must go

to great lengths to ensure its accuracy. Parts of the following analysis are taken from references 113

and 114 and are reproduced here for completeness.

3.5.5.6 Boundary Layer Edge Temperature Determination

At present, it is not possible to obtain direct measurements of the static temperature at the edge of

the attachment-line boundary layer ( TA ). It therefore follows that it is necessary to relate TA to the

attachment-line static pressure ( PA ) and shock shape ( A s ). Consider the situation sketched in

figure 2-2. The streamline which first enters the boundary layer at point 1 has passed through the

bow shock at point 2. We may write:

PA _ PA

P_, P01

Since the flow upstream of the shock is isentropic:

P01 P0..

P0._ P**

Y

P-

Moreover, the flow between the bow shock and the cylinder is also isentropic and so:

Pa _ETA] -_-1

p0-- -kT0J

Therefore:

Finally, if the bow shock is swept an angle A s relative to the freestream direction, then the change of

total pressure across the shock can be obtained from the oblique shock relations:
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andso:

7-1 1

P0"_'_--r(Y-l)M'2c°s2As+21p0, m iY: 1-'__=As J [2_/'_2c°s2As-(Y-X)]_-I(Y+ I)

(3-7)

The above equation allows the unknown temperature TA to be obtained from the measured surface

static pressure and the known shock sweep angle, as measured from the Schlieren photography. It

follows immediately that:

PA _ (PA [ p_)

= l

1

VA MALTA1-2

T_

During examination of the Schlieren photographs, one question that arises is what is the exact

value of A s to take; i.e., where does the streamline that impacts the attachment line at a given y

location, first cross the bow shock wave? And is this value really critical? In order to answer the latter

question, an analysis was undertaken of P0oo / P01 as a function of Mach number and shock angle

(fig. 3-24). For a freestream Mach number of 1.6, P0= / P01 is approximately constant up to a A s of

65 °. Since the Schlieren photographs show that the bow shock is still highly curved near the apex of

the cylinder (where the streamline of interest must pass through), A s will be below this value, and so

the value of A s becomes virtually inconsequential for the purpose of this calculation. Now:

y-I

) = r-"
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Therefore, for fixed freestream conditions ( M**, To., p,_ ) and obtaining PA from the experiment, Ta

will also be invariant with A s .

If the freestream Mach number was higher, then the choice of the correct A s would become

critical, and some form of flow visualization would be required to establish the exact point at which

the streamline of interest crossed the bow shock (such as in an experiment, or from a CFD solution).

As can be seen, this is an especially significant consideration for hypersonic flows.

3.5.5.7 Obtaining Experimental Velocities

Consider figure 3-25, a schematic diagram of the flow over the windward face of an swept-

infinite cylinder. Since the cylinder is swept-infinite, all flow variables are independent of spanwise

position. At the edge of the attachment-line boundary layer, the total temperature, TO, and the local total

pressure, P0, are linked to the local static values by the isentropic relation, which for a perfect gas with

constant specific heats is:

Moreover, since the total temperature and local total pressure are constant along the streamline which

is coincident with the body surface, at any given point the local static pressure and local Mach number
are such that:

or:

7 7

P_._O=(1..l_(_)Me21_-I = PO PA IZol"_-I PA
Pe PA Pe =_.'-_A ) -_e

Noting that the speed of sound a e is given by:

ae 2 = _,RT e = _rgz A __ T

it follows that:
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For a swept-infinite flow:

and, at the attachment line:

Hence:

_2=_2+_2

27RT 0 27RT a

(?- 1) = (9'- 1) + V_2

1

Ue \-_AJ lJ

Note that Voo is the spanwise velocity along the cylinder, and provided that to a first approximation

this does not vary with 0, then this analysis holds even for a finite length model, when the shock is

not parallel to the cylinder. Also note that U e has no freestream dependence.

(3-8)

3.5.5.8 Velocity Curve Fit Routines

It was found that fitting a curve to the chordwise velocity distribution produced a much more

accurate result for the velocity gradient than extracting the velocity distribution from the curve fit to the

chordwise pressure distribution.

Recall the incompressible potential flow solution for the crossflow velocity around a cylinder is an

antisymmetric function:

03 05 )
U---_e=2sin0=2 0-_+_-...
U_ 3! 5!

Appropriate curve fits would therefore be:

U--'c-e= aO + bO 3 and U---g-e= aO + bO 3 + cO 5
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As can be seen in figure 3-26, the third order polynomial does well in representing the behavior of

2sin 0 up to at least 0 = +_.50°. The fifth-order polynomial is particularly successful since it takes

advantage of all inflections in the velocity distribution to as far as 0 = _+90°. Fifth-order polynomials

were therefore fitted to the velocity distributions obtained at each spanwise location using a least

squares technique.

3.5.6 Internally Heated Cylinder

A cylinder capable of generating internal heat and raising its own surface temperature was also

designed and produced. In order to raise the surface temperature, cartridge heaters placed inside a solid

model were utilized. Surface temperature was set by inputs to a temperature control system.

3.5.6.1 Heating Requirements

A steady state heat flux calculation was carried out in order to calculate the power necessary to

raise the wall temperatures 150°F above stagnation temperature (about 17 I°F). Experimental results
for a cylinder in crossflow as a function of Nu, Pr, and Re,,, axe found in references 115 and 116.

These data yielded a 2.0 to 2.4 kW power requirement, assuming a 15% power loss via conduction

through the end support into the wall with no radiative losses accounted for. The accuracy of these

results was deemed to be no better than 25%. The details of these calculations are given in

Appendix C.

3.5.6.2 Selection of Heaters

Because of the internal size constraint of the cylinder, a large watt density (power per unit volume)

would be required. This ruled out applying hot films to the interior surface, since the maximum

commercially available hot-film watt density was one-tenth of that required. A radiative heating

element, such as used in furnaces, and heater elements for hot water tanks were also considered, but

these too were discounted since they had end fittings that were too large for the 1.5 inch internal

diameter. Hot oil from an external pump was also considered. This had the advantage of approxi-

mating a uniform heat flux distribution inside the cylinder, but this too was ruled out since the heat

loss from the oil en route to the cylinder would have necessitated an even larger power input. Cartridge

heaters were found to fulfill all the requirements, being small with a high watt density and cheap. A

single heater, however, would not be able to fit far up inside the highly swept nose. Three 3/8 inch

diameter, 8 inch long, Omega cartridge heaters (CIR-2089/240) were selected, giving a maximum

power output of 3 kW when connected to a 240V a.c. supply. This overdesign was to allow for the

inaccuracy of the heat flux calculation and leave a reserve margin. The use of three heaters allowed for

an even distribution of power from the three-phase electrical power supply.
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3.5.6.3 Design of the Internally Heated Cylinder

The need to accommodate the cartridge heaters inside the model resulted in a three-piece

configuration, as shown in figure 3-27. All components were made of aluminum 6061 T6 so as to

conduct the heating quickly and as uniformly as possible.

The model's highly polished outer shell formed the exterior flow surface and was finished to

below 10 microinches rms. Ten T-type thermocouples (24 gage) were evenly placed along the

attachment line of the cylinder, from 2.7 to 11.7 inches from the apex ( y� D from 1.7 to 7.3). These

were placed in the 1/8 inch thick wall at 0.020 inch from the external flow surface line, and were set in

place from the rear of the cylinder using access holes (fig. 3-28).

The cartridge heaters were symmetrically positioned inside a heater block which slid inside the

outer shell (fig. 3-29). Special conductive paste (aluminum particulate-based OmegaLux heat transfer

and release coating) facilitated better thermal contact between all components. The two heaters closest

to the attachment line started at 3 inches ( y / D = 1.9) from the tip of the model, and the third heater

started at 4.8 inches (y� D = 3.0). The leads from the attachment-line thermocouples were laid down

in a groove cut into the heater block so as to be just behind the attachment line. This design compro-

rnise meant that the attachment line was shielded from direct heating by the thermocouple leads, but

heat easily passed through the highly conductive cylinder walls to uniformly raise the attachment-line

temperature. Using a sliding insert prohibited thermocouples from being placed off the attachment

line in the chordwise direction. Because of the expected high internal temperature of the heater block,

care was taken to ensure that the protective sheathing around the thermocouples did not exceed the

manufacturer's recommended maximum temperature of 500°F. This was achieved by surrounding

the thermocouple bundle with a layer of fiberglass, and positioning an additional two thermocouples to

measure the temperature of the bundle itself. One thermocouple was placed at the lowest point of the

cut groove, while the other measured the external temperature of a thermocouple sheath in the bundle.

A solid end piece was fitted to provide end support and accommodate the two attachment bolts.

3.5.6.4 Design of the Heating Control System

The three heaters were controlled by a single Omega 8501-TC-DC-1 temperature control unit
employing PID control. The thermocouple at the 8.7 inch ( y / D = 5.4) location was selected as the

sensing unit for the control temperature. 208V a.c. power, located in the test cell, was ducted off from

a junction box and brought to a quick disconnect box and the temperature control unit located on the

south secondary injector. The principle behind the control unit was that a single temperature would be

used to control all three heaters together; i.e., they would all come on and go off at the same time. A

system was designed using three solid state relays, as shown in the electrical drawing (fig. 3-30) and

photograph (fig. 3-3 i). The heaters were connected in a delta load configuration. Using a 208V a.c.

versus a 240V a.c. supply meant that the heaters would only supply 0.75 kW each with a line current

of 6.30 amps and a line voltage of i20.1. Line currents were therefore protected by 10 amp fuses.

No forced internal cooling was provided with this design, since the model would normally be

operated in the cool convective freestream of the tunnel. However, a bench test was made in the

ambient still air of the laboratory in order to test the control system and compare the attachment-line
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temperaturesasrecordedby theinternalthermocoupleswith anexternalthermocouple.Thetempera-
turecontrollerhadanautomatedtuningprocessin whichstepinputsof heatwereappliedandthe
thermalresponsetimesof thecylindermeasured.Thecontrollerthencalculatedtheappropriaterate
settingsfor thePID algorithm.Oncethiswasdone,thecylinderachievedtypical setpointsof 50°For
100°Faboveambient in under a minute with no overshoot. Attachment-line temperatures as measured

by the external thermocouple were slightly below that recorded inside, which was to be expected given

the f'mite thickness of the cylinder wall. The rate settings were calculated again when the model was

placed in the tunnel freestream. The model again achieved target temperatures in approximately one

minute with little overshoot, and held the set temperature to within 1°F by appropriate on/off switch-

ing (rate setting) of the solid state relays connected to the heaters. With use of the available three-

phase, 208V electrical supply, the heaters could raise the wall temperature of the cylinder well in

excess of 250°F above the adiabatic wall temperature.

3.5.6.5 Electrical Power Supplied to Model

The three electrical heaters each received one phase of the three-phase supply, and this supply was

either fully on or off. The average electrical power supplied to the model was therefore calculated by

measuring the percentage of time the heaters were on:

[(percentage on) × 3 x 0.75 × 1000] watts

An Aero-Med Model Dash IV strip chart was connected to the input side of one of the solid state

relays that received the control signal from the temperature control unit, and was used to measure the

time the heaters were on. The strip chart was marked with a pen at the beginning and end of each

power setting. The time base was set at 5 mm/sec. A Fluke Model 87 multimeter was used to

measure one of the single-phase line voltages.

Measurements were made with the model in the forward position at Re** = 2.7 × 106/ft and

3.6 × 106/ft with varying Zcontro l. At least four cycles of on/off heating were recorded at each set

Zcontro 1. At every Zcontrol, the Reo, = 3.6 × 106/ft setting took more power than the Re.. = 2.7 x

106/ft setting. At Tcontro I "- 0°F and Re,o = 2.7 × 106/ft, the heaters were hardly on (3.4%), but at

Zcontro I = 240°F and Re_ = 3.6 × 106/ft, the heaters were on for well over half the time (55.1%).

Figure 3-32 and table 3-2 show the average electrical power supplied to the swept cylinder for various

control temperatures at the two Re** values. Average Nusselt numbers for Twall = 170°F are

calculated in Appendix C to be in the 639-766 range for these two Re_. Following the same

assumptions as used there, the measured power results gives Nusselt numbers in the 361--495 range.

3.5.6.6 Attachment-line Temperature Gradient with Internal Heating

Figures 3-33 and 3-34 show the temperature distributions along the attachment line for different

control temperatures at Re,_=3.65 × 106/ft and Re_=2.72 × 106/ft, respectively. The spanwise

gradient was unavoidable due to the finite-sized cartridge heaters being unable to reach all the way to

the tip inside the model. Consequently, the thin apex region of the model was colder than the main

section of the model, and this temperature difference increased with control temperature. At 120°F,
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oneseesthatthereis abouta45°Fdifferencein temperatureovera4 inchdistance.It canalsobeseen
thatthesolidcylinderalsohasanearadiabatictemperaturedistribution(assumingthemodelis
allowedfully quenchthermally).

In orderto seeif this temperaturegradientcouldbe lessened,oneof thethreeheaterswas
disconnectedandthePID autotunewasreset.Thishadnoeffecton thetemperaturegradientalongthe
attachmentline fromy = 0 to 6.7 inches, and simply increased the percentage of the time that the

heaters were on. Downstream of y = 6.7 inches, the temperatures increased more steeply, which

corresponds to the physical location of the third cartridge heater. Three heaters were therefore used

for the remainder of the experiments.

3.5.7 Attachment-Line Boundary Layer Sensitivity to Tip Roughness Effects

Initial testing of the heated swept cylinder model with a hot wire on the attachment line repeatedly

gave an apparent turbulent signal, regardless of Reynolds number or any other parameter. Pushing the

wire to the tip of the model, with the hot wire protruding out into the freestream flow ahead of the

bow shock wave, gave a laminar signal. Close examination of the tip region revealed a 0.001 inch

(Re = 300) upturned burr on the nose (fig. 3-35). This problem was removed after polishing, but

served to illustrate the sensitivity of the transition process to surface roughness at the nose at these

Reynolds numbers.

3.5.8 Splitter Plate Concerns

A cylinder placed normal to a flow will, under certain conditions, generate a Karman vortex street

behind it, with its subsequent shedding of oscillatory vortices. This produces an upstream influence

whereby the downstream periodic motion transmits pressure signals upstream through the subsonic

boundary layer. This phenomenon was also considered a possibility for a swept cylinder, and might

therefore alter the attachment-line transition mechanisms. The controlling parameters in this case

would be the crossflow component of velocity. Murthy and Rose (ref. 117) showed that this shedding

of vortices was bounded by both Mach number and Reynolds number limitations, and was generally

found to occur for Strouhal numbers in the range 0.17 < St < 0.23, for Re D = <0.5 x 106 and

Moo < 0.9. The 76 degree swept cylinder had a subsonic normal Mach number of 0.39 and

Re D = 0.46 x 106 which placed the flow in this category. Based on the component of the freestream

velocity normal to the cylinder, a potential for shedding vortices with frequencies in the range

431 < f < 582 Hz existed.

Degani and Zilliac (ref. 118) showed the effect of a splitter plate in alleviating such disturbances

by breaking up the oscillatory motion of the shed vortices and establishing a symmetrical shedding

pattern. This dramatically reduces the lateral forces on the cylinder, which is also an important

consideration when considering the stresses induced in a cantilever cylinder. A cylinder in incompres-

sible flow was estimated to perturb its surrounding flow for roughly five diameters in all directions;

hence it was decided to design a splitter plate that would extend from the rear of the swept cylinder to

at least five diameters downstream. It was also hoped to double-check the influence of the splitter plate
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by installingKulite pressuretransducersat_+90"to seeif therewasanyboundarylayerpumpingwith
theplateoff.

Figure3-17showsthesplitterplatein sideviewconnectedto thecylinderandwindowblank.
Notethatthesplitterplatecouldonlybe fittedto thewindowwhenthecylinderwasin theforward
position.Figures3-36 and3-37showtheverticalspacerandsupportblocksthatweredesignedto
holdthesplitterplate.

3.6 Accelerometer System

In order to unobtrusively measure the dynamic characteristics of the swept cylinder model, small

and light accelerometers that could be mounted to the surface of the cylinder were required. The easiest

way to do this was to mount the accelerometers to the rear of a hot-wire probe body. A small 1/2 inch

cube was attached to the rear of a Mark 2 hot-wire support block, and the two accelerometers

(Endevco Model 2222C), weighing 0.5 g each were recessed mounted into this block such that their

axes were at fight angles, and parallel to the vertical center plane, to an accuracy of 1° (fig. 3-38). The

accelerometers were attached to the block using cyanoacrylate adhesive (SuperGlue). The accelerome-

ters had a charge sensitivity of 1.4 pC/g, and a frequency range of 20 to 10,000 Hz. The system was

completed by an Endevco power supply (Model 109) and a two-channel charge signal conditioner

(Model 104).

The complete assembly was secured on the attachment line with plastic ties such that the

accelerometers were at y = 8.0 inches. The sensitivity of each accelerometer was dialed in on the

signal conditioner, and the output gain was set to 1.0. The signals were then passed to the Tektronix

Fourier analyzer.

3.6.1 Cylinder Wake/Body Interaction Investigation

Previous swept cylinder tests have sometimes been performed with a faired after-body to reduce

the possibility of unsteadiness in the wake that might buffet the body or propagate disturbances

upstream through the cylinder boundary layer. A series of tests were therefore performed to investigate

whether there was any interaction of the wake on the cylinder body. Two accelerometers were

mounted on the cylinder, as described above, and a 5.0 jam freestream hot-wire probe was traversed

into the wake one cylinder diameter downstream of the model to investigate the frequencies of
the wake.

3.6.1.1 Wind-Off Structural Response of Cylinder

A static vibration analysis was first undertaken to assess the resonant frequencies of the model.

The model and test section were hit with a rubber mallet at various locations, and the transient

responses of the model were recorded by an HP Dynamic Signal Analyzer Model 35665A, set to

pretrigger. By striking the underside and side of the model, the resonant vertical frequency was found

to be 104 Hz, and the resonant yaw frequency 92 Hz. Higher frequencies were induced by striking the

top and side of the test section (i.e., setting the support mount into vibration).
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Cylinderverticalmode 104Hz

Cylinderhorizontalmode 92Hz

Testsectionverticalmodes 1.0, 1.9,and3.8 kHz

Testsectionhorizontalmodes 1.1and2.1kHz

Figure3-39showstheverticalresponseof themodel to a vertical hit, showing a classic decaying

sinusoid in the time domain. Figure 3-40 shows the characteristic spike of this resonant mode at a

frequency of 104 Hz.

3.6.1.2 Traverses of the Cylinder Wake and Accelerometer Response

During the tunnel runs, the signals from the accelerometers were recorded at various frequency

ranges to get a clearer resolution of the processes at work (0---0.5, 0-2, 0-5, and 0.10 kHz). The

dominant vertical frequencies were measured to be 4.8, 3.8, and 2.8 kHz and 930 Hz. Dominant

yawing frequencies were 4, 2.3, 1.5, and 1 kHz. Fundamental frequencies were measured at 92 Hz

(yaw) and 104 Hz (vertical). All of these frequencies were invariant with changes in freestream

Reynolds number. Therefore, for the range of frequencies that these accelerometers are rated

(0-10 kHz) the detected vibrations were structural and not related to aerodynamics.

The horizontal acceleration was always measured to be greater than the vertical, and these accel-

erations were greater at Re_ = 3.4 x 106/ft than at Reoo = 2.4 x 106/ft (vertical/yaw accelerations =

0.82 and 0.76, respectively). These results make sense since the model was bolted in the vertical plane

and was therefore stiffer in the vertical plane. The maximum yaw displacement was 0.1 mm.

A 5.0 gm freestream hot-wire probe was traversed into the wake one cylinder diameter

downstream of the model. The wake was clearly defined and had a typical peak in the hot-wire a.c.

output at the wake edge (fig. 3-41). The nature of the hot-wire response is in agreement with that

observed by Uberoi and Freymouth (ref. 119). It was also found that the wake definition was virtually

unchanged with Redo.

As the wake was probed, frequency spectra were recorded with varying ranges (0-100, 0-20, and

0-1 kHz). Comparing the freestream points to points "on the edge of the wake," no changes in the

frequency spectra were found except for an overall rise in rms level, i.e. no new peaks appeared. The

rise in rms level was accompanied by an increasing number of spikes in the time signal, but since no

well-defined frequency band was associated with this in the FFT, this was attributed to bursts of

broad-band turbulence; i.e., no periodic shedding was occurring behind the cylinder.
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3.6.1.3 Comment on Effect of Wake on Transition Results

The only discernible frequencies in the accelerometer signals were those due to cylinder and tunnel

vibration. It was concluded that the wake consisted of near-uniform turbulence with no periodic

shedding, and that the wake caused no adverse interactions for this configuration under these

conditions; i.e., the effect of the wake on the attachment-line transition was too small to measure.

3.7 Schlieren Photographic System

3.7.1 Theory

Figure 3-42 shows a practical Schlieren system employing concave mirrors. Light from a uniform

illuminated line source of small but finite width is collimated by the first mirror and then passes

through the test section. It is then brought to a focus by the second mirror and projected on the screen.

At the focal point, where there exists an image of the source, there is introduced a knife-edge which

cuts off part of the light. With no flow in the test section, the knife-edge is usually adjusted so as to

intercept about half the light, and the screen is uniformly illuminated by the portion of the light

escaping the knife-edge. When the flow is established in the test section, any light ray passing through

a region in which there is a density gradient normal to the light direction will be deflected as though it

had passed through a prism. Therefore, depending on the orientation of the knife-edge with respect to

the density gradient, and on the sign of the density gradient, more or less of the light passing through

each part of the test section will escape the knife-edge and illuminate the screen. Thus the Schlieren

system makes density gradients visible in terms of intensity of illumination. A photographic plate at the

viewing screen records density gradients in the test section as different shades of gray. For practical

reasons the source and its image must usually be off-axis, and this produces some astigmatism.

For instance, the position of the source image is different for horizontal and vertical knife-edge

arrangements, and the knife-edge must accordingly be moved from one position to the other.

When viewing three-dimensional flows, special consideration must be given to the fact that the

image on the screen is an integration along the light path through the test section, and no depth

perception information is available for interpreting the results.

3.7.2 Equipment

The high intensity, short duration light source was provided by a Palfiash 500 manufactured by

Photonics Analysis Ltd. This unit produces a spark between two electrodes that have a 10,000 volt

differential voltage applied across them. Argon gas from a nearby tank was available for purging the

air from between the electrodes so as to produce brighter and more predictable sparks than in air alone;

the argon gas also reduced electrode wear. Flashing of the unit was controlled by a Palseq 400, also

by Photonics Analysis Ltd. The Palflash was usually configured to give a continuous beam of light,

until triggered by the Palseq 400, which in turn was triggered by the opening of the lens. The Palflash

was positioned on the north side of the tunnel on an adjustable tripod, and was aimed at the first of

two 17 1/2 inch diameter concave mirrors (fig. 3-43). Parallel light from the mirror then passed
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throughtheopticalqualitywindowsof thetestsectionandreflectedoff of thesecondconcavemirror
on thesouthsideof thetunnel.Thereflected,converginglight wasbroughtto afocusat a vertical
razorbladewhichactedastheknife-edge(fig. 3-44).A Sinaropticsbenchwasusedto adjustthe
positioningof theknife-edge,lensaperture,andimageplane.Imageswereformedonafiat-ground
glassplaneat therearof theopticsbench.PhotographsweretakenusingPolaroidPolapanASA 400
film housedin afilm carriage.A 30seconddevelopingtimewasusuallyrequired.A videocamerawas
alsofocusedon thisplaneandits imagedisplayedonatelevisionmonitorto providereal-timeimages
anddatarecording.

Air fromthehighpressureair supplywasdirectedthroughpipesovereachof thetestsection
windowssoasto form a sheetof dry,purgingair.Thishelpedin maintainingtheoutsideof the
windowsfreefrom condensationfor about40minutesaftertunnelstart.

3.7.3 Procedures

The Schlieren image was extremely sensitive to the position of the knife-edge. Before every run,

the system was retuned and checked. A good test of whether the knife-edge was in the correct position

was to slowly screw the knife-edge into the focal point and check that the image became darker

uniformly across the field of view. If the image darkened from one side or the other, the knife-edge

was not at the true focal point. The final setting was sensitive enough to detect body heat in still air
conditions.

These alterations were made with the continuous light source on. However, the spark produced by

the Palflash, especially in air, sometimes had a light path that was different from the continuous light

path, thus resulting in poor quality photographs. Ultimately, trial and error were the best ways to tune

the system.

In order to take a photograph, the film was loaded into the film carriage and mounted onto the

rear of the optics bench. The test section windows were wiped clean and dry. The lens aperture was

primed in the closed position, and the film cover removed. The room lights were then turned off, and

a remote trigger was pushed which opened the aperture and also sparked the Palfiash. The room lights

were turned back on, the film cover replaced, and the carriage removed from the optics bench. The

film was removed from the carriage and developed.

3.7.4 Photographs

Before each test, a wind-off photograph was taken for reference purposes. Masking tape was

stuck on the outside of the test section windows to define a 1 inch distance.

After placing the swept cylinder model into the test section for the first time, Schlieren

photography was used to determine the nature of the bow shock wave, specifically to see where

the reflected bow shock wave hit the cylinder and to check for other disturbances in the fow.
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Thebow shockwavewasstudiedwith thesweptcylindermodelin theaft position.Figure3-45
showsthatthebow shockwaveis attachedatthetip andis slightlycurved,which is in qualitative
agreementwith theCFL3D solution.Theinitial shockwaveangleatthetip wasmeasuredtobe50°
bendingbackto 43"downstream.TheCFL3Dsolutiongave45° bendingbackto40°, thedifference
beingpossiblydueto viscouseffects.

With thecylinderin theforwardtestingposition,thelocation of where the reflected bow shock

wave impacted the attachment line was found. Figure 3-46 shows the reflected shock wave hitting the

rear of a hot-wire probe at a spanwise distance of 9 inches, which agrees with the predicted value

arrived at in the design of the wedge spacer using the CFL3D solution. The cylinder was thus in the

correct vertical position to achieve an optimum test run length along the attachment line, and no further

adjustments had to be made to the wedge spacer.

Figures 3-45 and 3-46 also show other disturbances in the test section, which were traced back

and found to be emanating from various joints of the wind tunnel walls. These waves were found to

have an angle of 39 °, which is exactly the Mach angle for a Mach 1.59 flow. Therefore, these waves

are Mach waves and are of very low strength. Attempts were made to reduce these as much as

possible. The tunnel was always allowed to thermally stabilize after startup. This process lasted

approximately 20 minutes, which aided in the correct fitting of the joins. Shims placed under the upper

window blank were very successful in reducing the wave emanating from the upper window blank/test

section join. Hand polishing of all the joins also helped considerably but never removed the waves

totally. However, none of these waves impinged on the transition test surface of the model, as seen by

the lack of a wave reflecting off of the surface of the model, and the path of the disturbance before the

cylinder being exactly in line with the path after the cylinder. (The bow shock wave's path before the

cylinder forms two parallel paths after the cylinder that are not in line, thus showing that the bow

shock wave has wrapped around the cylinder.) Since the Schiieren system integrates the optical image

along its light path through the test section, waves believed to be confined near the walls of the tunnel

give the appearance of spanning the tunnel. (This was based on the fact that hand polishing was very

difficult to accomplish near the right-angled comers of the tunnel and subsequently small steps were

left there.)

Figure 3-46 also shows a 1/2 inch thick layer along the tunnel wall which at first appears to be a

turbulent boundary layer. However, due to the integration of the final image along the optical path, this

could possibly be caused by comer vortex flows in the rectangular test section. This hypothesis is

further supported by the observation that shock waves in test section appear to pass right through this

apparent turbulent layer and reflect off the tunnel walls. Further investigation is required to determine

the exact nature of the boundary layers on the test section walls. As far as the experiment is concerned,

however, only the freestream disturbance level where the model is located needs to be determined. So

long as this disturbance level is suitably low and quantified, then investigation of the boundary layer is

not required at this time.

Other points of interest can also be seen. Figure 3-45 shows that the disturbance generated off of

the lower surface of the apex is also a Mach wave, as evidenced by its angle. The boundary layer on

the lower (flat) section of the apex can be seen to be clearly growing in thickness with downstream

location. Figure 3-46 shows the wakes generated behind the swept cylinder and the hot-wire probe.

Notice, however, that the boundary layer along the attachment line that is upstream of the hot wire
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cannotbeseenwith this"global"Schlierensystem.This shouldnotbesurprisingsincethehot-wire
signalindicatedalaminarboundarylayer,whichtheBL3D calculationspredictto be0.009inchthick.
However,thisopticalmethodonly detectsdensitygradients,andthedensitygradientin theouterpart
of theboundarylayerisprobablytoosmallto bedetected.Therefore,thetrueboundarylayer
thicknessis probablymuchthickerthancanbeopticallydetected.

3.7.5 Surface Flow Visualization

3.7.5.1 Oil

The oil flow visualization technique was used in order to gain an understanding of the overall flow

pattern over the model. The heated cylinder was fixed to a clear (Perspex) window blank so that all-

round optical access could be obtained. Several mixtures of oil, lamp black, and oleic acid were tried,

but the most successful consisted of an oil of 750 centipoises viscosity mixed with lamp black and two

of drops of dispersing oleic acid. The most satisfactory results were obtained when the mixture was

applied liberally over a 3/4 inch strip along the attachment line. The flow was allowed to carry the

mixture back over the complete surface of the model, which took about 5 minutes after startup.

Photographs were taken while the tunnel was running, since the shock wave passing through the test

section at shutdown altered the pattern. Due to the cold freestream temperatures, it was found that

maintaining the internal heaters at Tcontro I = 60°F aided in the oil dispersion. All results were obtained

at Re_ = 2.4 x 106/ft.

Several distinguishing features were evident in the overall pattern (fig. 3-47). First, the reflected

bow shock wave is clearly seen at y = 9.3 inches, and this caused a slight buildup of oil at the incident

location. The line of separated flow is also clearly visible at around 90 ° before the incident shock

wave, moving up to 70 ° after the shock. Crossflow vortices are evident from about 20 ° around to the

separated flow region. Measurements from the photographs revealed a crossflow vortex spacing of

approximately 0.04 inch.

Figure 3-48 shows the diverging flow pattern around the attachment line, and provided a sound

double-check that the cylinder was truly aligned in the tunnel with no induced yaw angle. A turbulent

wedge, caused by particulate in the oil mixture near the tip, is clearly seen.

3.7.5.2 Naphthalene Sublimation

The naphthalene sublimation technique (ref. 58) was applied to see if crossflow vortices could be
observed in the chordwise direction.

The naphthalene was dissolved in freon (until the freon became fully saturated), filtered, and

applied to the model with an airbrush. Great care was exercised to ensure that the mixture was applied

evenly and consistently over the surface. Applying the mixture with the model in situ was awkward

and did not provide the most uniform coating possible with this technique. Best results were obtained

when several coats were applied and the rough surface was smoothed over using the tips of one's

fingers (while wearing latex gloves). At all times, the application of naphthalene was undertaken while
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wearingprotectiveglovesanda respirator,with goodroomventilation.After spraying,thesurface
wasmarkedwith ablackpento indicate30° angleincrementsfromtheattachmentline,atabout
6 inchesfrom theapex.Photographswerealwaystakenin awind-off condition.Black felt mounted
oncardboardwasusedto completelylinetheworkingsectionto provideabackdrop.Theinternal
heaterswerekepton to reducecondensationeffectswhilethetestsectionwindowswereopento the
moistatmosphericair.

It wasfoundthatwith twocoatsof mixturethenaphthalenesublimatedoff therelativelywarm
surfacebeforethemodelhadcooledto itsequilibrium(adiabatic)state.Applyingthreecoatsresultedin
thenaphthalenestayingon thesurface,but thenit wouldnotsublimateat all atequilibriumtempera-
tures.A compromisewasfoundby slowly increasingtheheatsuppliedto themodel.Althoughthis
isnot truly thesameasincreasingthefreestreamtemperature,it didbringoutsomeof theflow
characteristics.Figure3-49showsthecylindercoatedin naphthalenejust beforetherun,aswell asa
0.025inch diametertrip wire whichwasknownto createfully turbulentflow. Figure3-50wastaken
immediatelyafterstartup.Notethatthetripwire causedanimmediatesublimationof napthalenefight
behindthetrip. Also notethatthenapthalenesublimatedawayto around100-110°, but thismighthave
beendueto athinnerapplicationof paintin thisarea.Figure3-51is aglobalview aftershutdown,and
figure3-52is aclose-up.Here,transitiondueto stationarycrossflowvorticesis clearlyseenin the
whitemixture,asevidencedbytheclassicfeatheredtrailingedge.Acrossa 1inch arclength,there
wereapproximately30 striationsin themixture,givingawavelengthof 0.033inch( A/t_ = 3.3) at

Re D = 4.5 x 105, which is comparable to the oil measurement. These results are also of the same

order as measured in references 66 and 67 at Mach 3.5 using oil (wavelengths from 0.03 to 0.04 inch

( _/t_ = 5- 7 ) at Re D = 4.6 x 105). The sublimation solution revealed the high shear and increased

temperatures associated with the attachment line, since no mixture remained there. A pattern was also

seen in which the trailing edge was seen to be asymptoting toward a line parallel to the attachment line

at 0 -_ 30 ° as one would expect to occur in swept-infinite flows. This suggested that a hot wire

traversed in the chordwise direction (normal to the attachment line) should be able to detect a rise in

signal due to turbulent flow created by crossflow vortices near this angle.

These results were obtained with the internal heaters set to Zcontro l = 30°F. Therefore, could

the internal heaters have caused this feathered pattern? The heaters are positioned at +40 ° and one at

180 °. Therefore, maximum surface heating would occur around 40 °, but this was close to where the

napthalene remained. Therefore the sublimated shape was not a result of the heaters but of the air flow.

3.8 Temperature Sensitive Paint System

The temperature sensitive paint (TSP) technique was applied to quantify the global surface

temperature distribution and possibly locate a boundary layer transition front along the attachment line.

3.8.1 Theory

In the TSP technique, a special paint is applied to the surface of interest. The surface is then

illuminated with ultraviolet (UV) light which excites a fluorescence in the paint that is temperature

dependent. The molecules in the paint are then excited to an upper singlet state by the absorption of
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light.Thedecaybackto thegroundstateoccursthroughfluorescence,phosphorescence,or vibrational

relaxation. The rates of these competing processes are temperature dependent and quantifiable. The

surface temperature is then directly related to the intensity of light emitted from the paint.

For this study, a rare earth complex, Europium Thenoyltrifluoroacetonate (EuTTA), was used as

the fluorescent paint. More details concerning the governing equations for this technique can be found
in reference 120.

3.8.2 Equipment

The model was first uniformly sprayed with a white undercoating. Three ink dots were then

applied along the attachment line as locator marks at approximately y = 1, 5, and 9 inches. The

cylinder was then coated with a solution of EuTTA paint mixed in dope, as used by Liu (ref. 120).

The paint mixture consisted of 75 ml dope and dope thinner with 1 gm of EuTTA. The dope to dope
thinner ratio was 3:1.

A charged coupled device (CCD) camera and one or two UV lamps were mounted vertically

above the cylinder outside of the tunnel. The CCD camera was mounted in a specially built trussed

cantilever frame (fig. 3-53). The cross bracing of the frame aided in reducing lateral movements of the

camera to a minimum. Liquid cooling of the camera was required in order to maintain operation

temperatures. The upper wall of the test section was made from optical quality Plexiglas and so

allowed visual access. The lamps had an excitation wavelength of 365 nm, and the CCD camera filter

was set to the paint emitting wavelength of 620 + 10 nm. Images were taken and averaged for each

condition using a computer with imaging software.

Initially, only one UV lamp was used to illuminate the model, and it was positioned in the same

vertical plane as the camera. What was at first thought to be blemishes in the paint finish were in fact

reflections of the UV lamp filaments off of the upper and lower window blanks. Indeed, moving the

lamp made the "blemishes" disappear. A problem in positioning the single light source was that the

lamp always had to be in the vertical center plane to provide symmetrical illumination but as such the

filaments always reflected into the camera. The solution was to mount two lamps equidistant from the

vertical center plane on their own cantilevered mounts, as shown in figure 3-53. One precaution was to

ensure the lamps were not so close to a window as to melt it.

3.8.3 Data Acquisition and Reduction Procedures

The UV lamps were switched on and allowed to warm up for 15 minutes prior to taking images.

When not taking images, the top of the test section was covered by a black cloth in order to prevent

unnecessary paint degradation. UV protective glasses were always worn by researchers in the

immediate vicinity while the lamps were on. The lamps were angled so as to uniformly illuminate the

model surface as much as possible, although this was not crucial since variations in surface intensity

due to illumination would be accounted for in the final processing of images.
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Thecamerafirst took a"dark image"of themodel,whichwasessentiallyanimageasif a lenscap
wason thecamera.Thisgavethenoiselevel.Tenimagesweretakenfor eachcondition.No problem
wasencounteredwith pixel to pixelmappingdueto therigid supportof thecamerawith respectto the
model.As eachimagewasreadin, the"dark image"wassubtracted,sothattherunningtotalwas
minusthenoiselevel.Tenimagesweretakenfor thewind-off condition,andtenimagesat each
temperaturesetting.This"summedimage"wasthenspatiallyfiltered,in whichtheintensityat the
pixel of interestwasaveragedoveritselfandits eightneighboringpixels.Theratioof wind off/wind
onwasthentakenelementby element.Thisresultantmatrix (of ratios)wasthenspatiallyfilteredas
well, andthedatawerethenwrittento file andsaved.Thethermocouplelocationsalongtheattachment
linewerelocatedin pixel space.At eachthermocouplelocation,theintensityratiowasaveragedovera
5 x 5pixel area,centeredon thethermocouple.Thisproducedalistingof temperatureversusintensity
ratio (from all temperaturesettings).Theintensityratioswerethenmultipliedby theexposureratioat
thatsetting.As thesurfacetemperatureincreased,thepaintwasseento becomeduller. In orderto
achievebestresults,theexposuretimewasvariedateachtemperaturesetting.At thehighesttempera-
turesettings,partsof theimagewerecroppedto preventoverexposureof theCCDcamera.Whenthe
datawereplottedas(intensityratiox exposureratio) versustemperature,a singlecurvedline was
produced(fig. 3-54).Variousordersof polynomialfits wereapplied,andit wasfoundthatafourth-
orderfit gavethemostreasonableapproximation.Fittingall thedatapointsontoa singleline was
legitimatesincetheimageswereall acquiredduringthesamerun,andsohadthesamestagnation
temperature(i.e.,theconditionswerethesamefor all imagesexceptfor thesurfacetemperature
distribution).Therefore,for anyintensityratioandexposureratiosetting,thesurfacetemperature
couldbefound.Sincethemaximumtemperaturemeasuredby athermocouplealongtheattachment
line was158°F,thecalibrationwasonly truly validup to thistemperature.If anintensityratio
indicatedahighertemperaturethanthis,it wascappedat 158°F.Therefore,it wasexpectedthatareas
of constant158°Fwouldbeseen,especiallyoff theattachmentline andat hightemperaturesettings.
This limit wasplacedfor anumberof reasons.Firstly,to truly interpolateintensityreadingsusingthe
calibrationcurve.Secondly,athightemperatures,theintensityratioswerevery low.Multiplying these
by veryhighcalibrationslopecoefficientswouldhaveproducednumericalerrors.

Previously,in Colemanet al. (ref. 121),temperatureswereobtainedby applying a linear

calibration fit to the thermocouple data along the attachment line for each particular temperature setting.

This produced a number of different linear calibration curves equal to the number of temperature

settings. High temperatures were obtained by extrapolating these linear calibration curves, although the

paint was known to exhibit nonlinear behavior at higher temperatures. This approach was dropped

when it became apparent that all data collapsed onto a common curve.

3.8.4 Transition Front Location Test

Trial runs, without any paint, were made with a 0.025 inch trip wire placed across the attachment

line. Previously conducted tests (ref. 122) had shown that this size of trip wire caused the boundary

layer to become turbulent immediately behind the wire, resulting in a local increase of surface

temperature around 2-3°F (fig. 3-55). However, applying this trip to the solid cylinder used in this

series of tests did not produce a local rise in temperature, but instead raised all wall temperatures by

2-3°F. It is believed that this was because the model, being made from solid aluminum, was a good

conductor of heat, diffusing any local heating effects through the metal. It was therefore suspected
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beforehandthatTSPwouldnotbeableto find atransitionlocationon thesolidheatedmodel,andthat
aninsulatedmodelwouldberequiredto detecttransition.

3.8.5 Surface Temperatures

Figures 3-56 through 3-67 show false color TSP images of the surface temperature distribution

and plots of the attachment-line temperature distribution for six heating levels at Reoo = 3.65 x 106/ft.

The apparent hole in the tip of the model was due to a preexisting drilled hole in the Plexiglas window.

Figures 3-56 and 3-57 show the no heating (adiabatic) condition. Most noticeable is the increased

heating along the attachment line, which is characteristic of stagnation line flows. As the heating level

was increased to Tcontro I = 30°F (fig. 3-58), the nature of the temperature distribution changed to a

predominately spanwise variation from the tip rearward, with no significant variation in the chordwise

direction. As the heating was increased to Tcontro t = 60°F, the chordwise distribution changed due to

the positioning of the internal heaters. The heaters extend from y = 2.75 inches to y = 11.75 inches,

and this becomes more apparent in the images with increasing Tcontro t. At Tcontro I = 90°F, the

temperatures at the edge of the image begin to exceed 158°F. At Tcontro I = 120°F, up to half the

surface is hotter than 158°F. As can be seen in figure 3-64, the temperature gradient at this setting is

now predominantly in the chordwise direction. As the heating was increased still further to Zcontro I =

150°F, the intensity of the paint showed that most of the model was above 158°F.
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Table3-2.Averageelectricalpowersuppliedto sweptcylinderfor variouscontrol
temperatures

Tcontro I ]°F Percentage of time Average power/watts
heaters on

0 3.4 76

40 7.8 175

80 15.4 347

120 20.7 466
,i

160 28.4 639

200 34.6 780

240 41.8 942

Results for Reoo = 2.7 x 106/ft.

Tcontro I/°F Percentage of time Average power/watts

heaters on

0 3.6 81

40 11.8 265

80 21.3 479

120 30.7 693

160 41.6 937

200 50.0 1127

240 55.1 1241

Results for Re_ = 3.6 x 106/ft
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Figure 3-1. Wheatstone bridge components (feedback amplifier

circuit not shown).
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Figure 3-3. Mark 1 hot-wire probe attached to swept cylinder surface.
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Figure 3-5. Close-up of Mark 2 hot-wire probe.

Figure 3-6. Hot-wire response to a square wave input.
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Figure 3-7. Schematic diagram of the Mach 1.6 Quiet Wind Tunnel.
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Figure 3-8. Mach 1.6 Quiet Wind Tunnel settling chamber components.
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Figure 3-9. Wind tunnel control and data acquisition computers.
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Figure 3-10. Pressure fluctuation data across the center of the test section 1.0 inch downstream

of the nozzle exit. 250 Hz-100 kHz range.
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Figure 3-11. Hot-wire fluctuation data across the center of the test section 1.9 inches

downstream of the nozzle exit. 250 Hz-100 kHz range, overheat ratio = 0.7.
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Figure 3-12. Pressure fluctuation data across the center of the test section 1.0 inch

downstream of the nozzle exit with tripped tunnel walls. 250 Hz-100 kHz range.
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Figure 3-14. Hot-wire fluctuation data across the center of the test section 1.9 inches

downstream of the nozzle exit with tripped tunnel walls. 250 Hz-100 kHz range,
overheat ratio = 0.7.
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Figure 3-15. Final swept cylinder configuration (shown in aft testing position).
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Figure 3-19. Comparison of wall temperatures along the attachment line. TO = 20°F,

Re_ = 2.4 x 106/ft.

Figure 3-20. Views of the pressure tap model.
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Figure 3-21. Initial arrangement of pressure taps on model surface.
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Figure 3-22. Final arrangement of pressure taps on model surface.
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Figure 3-23. Pressure tap model with pressure sealing box.
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Figure 3-24. Effect of M_ on choosing the correct A, for the streamline of interest

that enters the attachment line from the freestream.
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Bow Shock

a_

Figure 3-25. Schematic diagram of the flow over the windward face of a swept-

infinite cylinder.
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Figure 3-26. Approximating the potential flow solution for the crossflow velocity

around a cylinder.
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Figure 3-27. Heated swept cylinder model prior to assembly, showing outer shell, conformally

fitting heater block, and support plug.
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Figure 3-31. Photograph of heating control system.
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Figure 3-32. Average electrical power supplied to swept cylinder for various control

temperatures.
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Figure 3-33. Attachment-line temperature distribution with increasing control temperature,

Re** = 3.65 x 106/ft.
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Reo, = 2.72 x 106/ft.
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Figure3-35.Enlargedview of upturnedburroncylindertip.
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Figure 3-38. Accelerometers mounted on a hot-wire support block.
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Figure 3-39. Response of vertical accelerometer to vertical blow on model.
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Figure 3-41. Hot-wire traverse of cylinder wake (5.0 microns, 18 inches downstream of apex).
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Figure 3-42. Schlieren system with concave mirrors.

Figure 3-43. Schlieren spark source and mirror.
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Figure3-44.Schlierensystemknife-edgeandopticsbench.

Distancebetweentapesis approximately1 inch.

Figure3-45.Schlierenphotographyto determinethenatureof thebow shockwave.
Re_ = 2.4 x 106/ft.

99



Figure3-46.Thereflectedbowshockwavehitstherearof thehot-wireprobebody
at y/D = 5.6. Redo - 2.4 x 106/ft. Distance between tapes is approximately 1 inch.
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Figure 3-48. Enlarged view of the attachment-line oil flow pattern.
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Figure 3-49. Naphthalene before testing with 0.025 inch trip wire.

Figure 3-50. Naphthalene immediately after wind tunnel start.

Figure 3-51. Global view of naphthalene after shutdown.
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Figure 3-52. Observation of stationary crossflow vortices using the naphthalene

sublimation technique.

Figure 3-53. Temperature sensitive paint system.
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Figure 3-56. Surface temperature distribution for the adiabatic condition (no heating).

Reoo = 3.65 x 106/ft.
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Figure 3-57. Attachment-line temperature distribution for the adiabatic condition

(no heating). Re_ = 3.65 × 106/ft.
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Figure 3-58. Surface temperature distribution for Tcontro I = 30°F. Reoo = 3.65 x 106/ft.
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Figure 3-59. Attachment-line temperature distribution for Tcontro l = 30°F. Re_ = 3.65 x 106/ft.
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Figure 3-60. Surface temperature distribution for Tcontro I = 60°F. Reoo = 3.65 × 106/ft.
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Figure 3-61. Attachment-line temperature distribution for Tcontro I = 60°F. Reoo = 3.65 × 106/ft.
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Figure3-62.Surfacetemperaturedistributionfor Tcontro I - 90°F. Re_ = 3.65 × 106/ft.
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Figure 3-63. Attachment-line temperature distribution for Tcontlv l -- 90°F. Re_ = 3.65 x 106/ft.

109



Figure 3-64. Surface temperature distribution at Tcontro I = 120°F. Reoo = 3.65 × 106/ft.
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Figure 3-65. Attachment-line temperature distribution for Tcontro l = 120°F.
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110



Figure3-66.Surfacetemperaturedistributionfor Tcontro I = 150°F. Reoo = 3.65 x 106/ft.
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Figure 3-67. Attachment-line temperature distribution for Tcontro I = 150°F.

Reoo = 3.65 x 106/ft.
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4. EXPERIMENTAL RESULTS

4.1 Thin-Walled Cylinder

The hot-wire probe was attached to the model and the clean attachment line was studied over the

Reynolds number range of the wind tunnel. Two-dimensional disturbances in the form of trip wires

were then placed across the attachment line. Laminar, intermittent, and fully turbulent flow were

observed over a range of conditions. Based on the CFD-generated values of R and 17, the tripping

criteria were then mapped out on a so-called Poll chart for the quiet tunnel operational conditions. The

effect of increased tunnel disturbance level was then considered, and the results were compared with

the quiet flow conditions.

4.1.1 Smooth Cylinder Surface

With the hot-wire probe positioned just in front of the reflected bow shock wave, it was found

that the "clean" (no trip) cylinder had a laminar attachment-line flow up to the highest Reynolds

number available ( R = 760 at a distance of s / 17 = 3300 from the apex, based on the CFD results

in Chapter 2). No turbulence or bursting was seen at equilibrium temperatures.

Bursts were often seen, however, immediately after tunnel start, while the model was still

relatively warm. As the model cooled, the amount of bursting (intermittency) decreased until, when

the model was fully quenched, no bursting or disturbances were seen. This indicated the destabilizing

effect of a warm wall on the boundary layer condition. Since ambient room temperatures were

commonly only 70°F above the fully quenched wall temperatures, it was expected that an increase

of the wall temperature by 100°F would produce continuous bursting, i.e., transition onset.

4.1.2 Trip Wires Placed on the Model

For these tests, the hot wire was always positioned 8 inches from the apex so as to maximize

spanwise test length, and trip wires (from 0.001 to 0.025 inch diameter) were placed at various

locations from the tip (from 3.88 to 7.5 inches). The trip wires were attached to the cylinder surface

with duct tape in such a way that the tape did not interfere with the attachment-line flow. Figure 4-1

shows a close-up of the hot-wire probe and trip wire attached to the model. On one occasion, the trip

wire (0.005 inch) came unstuck from the model. The hot-wire signal immediately went from turbulent

to laminar, thus proving that the trip wire was inducing a convective, rather than an absolute,

instability along the attachment line.

4.1.2.1 Testing in a Low Disturbance Level Environment

The placement of variable sizes of trip wire at various distances from the cylinder tip over the

Reynolds number range allowed for the observation of laminar, intermittent, and fully turbulent flows.

Turbulent hot-wire signals with a characteristic fiat power spectrum were obtained with large trip
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wires andthesediffered considerably from the laminar (untripped) signals. Focused Schlieren flow

visualization of the attachment-line boundary layer was attempted to corroborate this information

(fig. 4-2). This provided an estimate of the boundary layer thickness (laminar 0.007 inch and turbulent

0.025 inch) and also showed the shock wave structure that formed on the hot-wire probe. (Note that

the BL3D solution gave a laminar boundary layer thickness of 0.009 inch.) Clearly seen are the shock

waves emanating from the hot-wire element, a crossbar that joins the two needles, and the main body

of the probe.

During one test, in which a 0.009 inch trip was placed at 6.5 inches from the tip with the hot wire

at 8.0 inches, laminar, intermittent, and fully turbulent flows were observed with increasing Reynolds

number (fig. 4-3). (Note the factor of 10 difference in scale for the laminar spectrum.) The observation

of turbulent flow was accompanied by a rise in measured recovery factor from 0.864 to 0.880. The

high voltage level of the intermittent signal is due to the wide range of disturbance frequencies and

their associated energies that are contained within the bursts. A 5% intermittency (first appearance of

bursts) was used as a threshold for the definition of transition onset.

Figure 4-3 also shows that the hot-wire system used in these tests had a frequency response of

approximately 50 kHz, as seen by the roll-off of the frequency spectrum. This low response was due
to the fact that the FML CTA unit was used for these tests. This was sufficient in order to define the

gross nature of the boundary layer, i.e., laminar or turbulent, but would not be sufficient for the

resolution of boundary layer disturbances.

Results were plotted against several nondimensional parameters which were extracted from the

CFD solution at the appropriate spanwise location along the attachment line. Note that Re k is based on

boundary layer edge conditions.

The tripped flow results are shown in figures 4-4 through 4-6. Figures 4-4 and 4-5 show that the

trip Reynolds number for this Mach 1.6 flow appears to be just below 1900. This can be compared

with the critical trip Reynolds number for a fiat plate with an adiabatic wall in supersonic flow, as

summarized by Gibbings (ref. 123):

Flat plate Mach number Re k

0.0 850

2.O 2,0OO

4.0 10,000

B

Figure 4-6 displays the results as R versus k� rl as proposed by Poll (ref. 10). A transition onset

boundary, offset from previous results, is evident. In an attempt to collapse the data to an incompres-

sible form, Poll proposed that a modified Reynolds number (R.) be used which evaluates the

boundary layer parameters at the reference temperature condition, and this is shown in figure 4-7

(refs. and 125).
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Thefirst thing thatstrikestheobserveris theapparentshiftto higher k / r/of the transition

onset boundary. At the time these measurements were made, it was not known whether the CFD-

generated values of R and r/ were correct. However, later tests conducted with the pressure model

(Section 4.2) confirmed the values of R and /7 used in these plots, thus proving that the location of

the data with respect to the chart axes was accurate. Therefore, the apparent shift of the transition onset

boundary could be attributed to the low disturbance testing environment. Increased wind tunnel
disturbance levels have been shown to have a marked effect on the location of the onset of transition,

as observed by Creel (ref. 65).

Disturbances in the boundary layer were detected when the hot wire was placed 0.5 inch behind a

0.009 inch trip ( R = 760, s / r/ = 204, and k / r/= 3.67). When the Reynolds number was increased

from R = 660 to R = 760, a broad-peak curve appeared in the frequency spectrum. As can seen in

figure 4-8, the central frequency of this curve is located at 41 kHz, with the edges of the curve at

roughly 37 and 44 kHz. At first it was thought that this curve might be due to the natural disturbances

of boundary layer. However, later investigation with the heated cylinder model (Section 4.3) seemed

to suggest that this curve was a characteristic of the flowfield of the trip wire and a consequence of the

way in which the trip wire inserts disturbances into the flow.

4.1.2.2 Testing in a Raised Disturbance Level Environment

Increased wind tunnel disturbance levels have been shown to have a marked effect on the location

of the onset of transition, due to the receptivity mechanism which makes the attachment line more

sensitive to freestream disturbance levels. To test this hypothesis, an attempt was made to increase

the noise level in the Mach 1.6 Quiet Tunnel to a critical level. When the tunnel was "clean" and a

0.005 inch diameter trip wire was placed on the cylinder at 4 inches from the apex, the recorded signal

at y = 8 inches was laminar (R =760, k/1/=2.04). Size 80 grit sandpaper of 0.025 inch height was

then placed on the upper and lower walls near the nozzle exit such that the shock waves produced by

these trips passed in front of the apex, reflected off the opposite tunnel walls, and impinged on the

model aft of the hot-wire probe location (trailing edge of 1/2 inch wide upper wall trip tape 2 inches

forward of test section/nozzle join; trailing edge of lower wall trip tape 1/2 inch behind test section/

nozzle join). Intermittent bursts were then observed under these conditions, thus proving that the

increased levels of tunnel disturbances hasten the transition to turbulence in the presence of a trip wire.

These results are consistent with the observations of Creel (refs. 65-67). Further investigations are

required to correlate the relationship between the tunnel disturbance level and the height of wall trips in
this location.

4.2 Cylinder with Pressure Taps

4.2.1 Surface Pressures

Surface pressures obtained during the second test of the pressure model were acquired from

Re_ = 2.4 x 106/ft to Re,,,, = 3.4 x 106/ft in 0.2 x 106/ft intervals. Chordwise pressure plots revealed

that the true attachment line was offset 1.4 ° from the geometric coordinate system. (A later inspection

115



foundthatthetwoattachmentbolt holesweremisalignedbythesameamount.)Correctionswere
madesothatchordwiseplotswereconsistentwith thetrueaerodynamicattachmentline.Plotssuchas
figure4-9 revealednovariationin theCp distribution due to Re..

Figure 4-10 shows the complete Cp distribution over the swept cylinder at Mach 1.6. The

experimentally obtained Cp distribution along the attachment line is compared with the CFD solution

in figure 4-11. The two distributions have the same qualitative form, and seem to be asymptoting

toward the swept-infinite Cp value of 0.061 at large y/D. A weak pressure gradient along the cylinder
is evident.

4.2.2 Comparison of dU e/dx with Other Swept Cylinders in Supersonic Flow

Poll (ref. 114) surveyed a large quantity of pressure data for two dimensions and long, swept

circular cylinders with normal to leading edge Mach numbers in the range 1.3 to 13 and derived

expressions which described the variation of velocity gradient with the normal to leading edge Mach

number. He defined the chordwise surface static pressure distribution as:

f - Pe(O)
PA

where 0 = 0 corresponds to the attachment-line conditions (subscript A). Differentiating twice with

respect to 0 :

l (dUe_ d2 f -1/2 /2'
This was cast as:

}1/2ao 0=0

Hence, for swept-infinite cylinders, plots of f"(0) versus normal to leading edge Mach number

would demonstrate any Mach number dependency of the chordwise velocity gradient. The fifth-order

velocity curve fit for Re= = 2.4 x 106/ft at y = 5.7 inches was used as a typical example. It was found

for this case that f"(0) ) = --0.576, which is plotted in figure 4-12 along with the incompressible result

(f"(0) = 0). As can be seen, these data show that the chordwise velocity gradient for swept cylinders

is not independent of the Mach number normal to the leading edge for values below 2.0. This there-

fore demonstrates that attachment-line transition is sensitive to the Mach number normal to the leading

edge through the chordwise velocity gradient term.
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4.2.3 Experimentally Obtained Values of R"

Following the procedure outlined in Chapter 3, velocity curve fits were obtained from the pressure

data. Figure 4-13 shows the experimentally obtained R distribution at Redo = 2.4 x 106/ft and

3.4 × 106/ft compared to the CFD results. It can be seen that these values are higher, but are still

within 10% of the CFD solution. For the purposes of plotting results, the experimental values
were used.

4.3 Internally Heated Cylinder

4.3.1 Testing in a Low Disturbance Level Environment

For this series of tests, the heated cylinder model was mounted in the forward position. Both the

interior walls of the wind tunnel and the surface of the model were kept as clean as possible in order to
avoid contamination of the results.

An attempt was first made to capture a turbulent attachment-line boundary layer with heating,

using just the global Schlieren system. Unfortunately, a clearly defined turbulent boundary layer was

not apparent upstream ofy = 8 inches (fig. 4-14). However, the region where the reflected bow shock

wave impacted the cylinder offered some interesting images. As the surface temperature of the model

was increased, small amounts of turbulence could just be seen (fig. 4-14).

4.3.1.1 Observation of Instability Waves with Increasing Surface Temperature

Most of the heated cylinder runs were made with a fixed-position hot wire, and the transition front

was moved upstream toward the tip by increasing the control temperature.

Figures 4-15 through 4-17 show a typical output signal for a hot wire positioned at y / D - 4.4

at three different control temperature settings. As heating was applied, perturbations in a nominally

laminar flow (fig. 4-15) were seen to increase in amplitude, with well defined modulated wave packets

being observed at a control temperature setting of 110°F (fig. 4-16). As the heating was increased

further, the amplitude of the waves was seen to increase until large amplitude turbulent fluctuations

were observed with no discernible wave packets (fig. 4-17). A point of note here is that, as heating

was increased, no bursts were seen at this wire location but, rather, a direct move from "laminar" flow

(with very high amplitude waves) straight into turbulent flow.

The power spectra of these signals are seen in figures 4-18 and 4-19. As heating was applied, a

"bulge" appeared in the spectrum centered at 70 kHz with limits of 100 and 40 kHz (fig. 4-18). Just

as this bulge appeared, the oscilloscope displayed the modulated sinusoidal waveform associated with

the most amplified wave and thus provided an independent verification of the frequency of the most

amplified disturbance (set to trigger at packet onset). This bulge is indicative of wave packets, such as

seen with T-S waves along flat plates, and is the envelope of all detectable amplified disturbances.
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Furtherheatingcausedthebulgeto growandtheoverallrmslevel to rise(fig. 4-19),until apoint
wasreachedwhentheamplitudeassociatedwith themostamplifieddisturbancebeganto fall. This
occurredfor acontroltemperaturein excessof 210°F,atwhichpointno furtherheatingwasapplied.
Operatingata lowerReynoldsnumbercausedthisamplificationeffectto occuratahigherwall
temperature.

An attemptwasmadeto usetwo hotwiressimultaneously,butthisarrangementgeneratedmutual
interferenceeffectsandthewaveangleswerenotdeterminable.

4.3.1.2 Capture of Transition Front Along Attachment Line

Rather than drive the transition front over a fixed hot wire with increasing surface temperature, it

was desired to obtain a transition location for a fixed surface temperature distribution (as seen by a rise

in the hot-wire rms signal). This would provide unique transition data for future stability calculations.

Due to the narrow y / D range over which the hot wire could be attached to the cylinder, it was

necessary to find the appropriate conditions which would cause the transition front to be positioned at

approximately y = 7 inches. A simple traverse was devised which pulled the probe support block back

along the model using wires attached to the plastic ties that held the hot wire to the model. For these

runs, the temperature ratio Tw / T O would have to remain approximately constant.

Figure 4-20 shows the results of one such run at Re_ = 3.56 x 106/ft with a control temperature

of 125°F. The onset of transition is seen to occur around y/D--- 43. The surface temperature

distribution, with TO = 13°F, was as follows:

y / D Tw/°F

1.69 104

2.31 120

2.93 140

3.56 148

4.19 145

The power spectra of these signals are seen in figure 4-21. As the hot wire was pulled back along the

attachment line, the amplitude of the boundary layer disturbances increased and a bulge in the fre-

quency spectrum appeared. The sharp, well-defined peak at 65 kHz was presumed to be caused by a
structural vibration mode of the hot wire.
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4.3.1.3 Crossflow Investigation

To investigate the chordwise boundary layer under adiabatic wall conditions, a hot wire was

traversed away from the attachment line at y / D = 3.98 and R = 680 (fig. 4-22). Since no traverse

mechanism was available, this was accomplished in several start-and-stop operations. As can be seen,

the rms voltage rises quickly around 25 ° and peaks around 40 ° before falling back to a near-constant

level at 50 ° or above, which is very characteristic of a laminar-transitional-turbulent process (ref. 126).

This also agrees with the napthalene sublimation results. Figure 4-23 shows the power spectrum for

this traverse, and indicates a laminar boundary layer up to 0 = 20 °, with a marked transition to a

turbulent boundary layer around 0 = 30" to 40 °. To further investigate this, the hot wire was traversed

in the chordwise direction at y / D = 3.59, 4.30, and 4.92. At all three stations, it was found that the

0 = 30 ° signal was always at least intermittent, while the 0 = 20 ° signal was always laminar. Hence,

for an adiabatic wall, there was always a laminar attachment line with a transition occurring by

/9 = 30 °, presumably due to crossflow instability. Traverses on both sides of the model produced the

same results, thus proving that the cylinder was aligned correctly in the flow, with no off-centerline

surface irregularities that would cause asymmetry of the results.

Several runs were made with surface heating while the hot wire was traversed in the chordwise

direction at y / D = 3.59, 4.30, and 4.92. All three locations exhibited the same behavior. Figure 4-24

shows one such result at 0 = 20 °, which looks very similar to the attachment-line behavior, with the

familiar bulge appearing out of a background signal typical of a laminar boundary layer. At 0 = 30 °,

however, the boundary layer was nominally intermittent-turbulent, and high levels of surface heating

were required before the bulge could be made to appear (fig. 4-25). One can therefore conclude that

heating had no detectable effect on the crossflow instability, and only when the attachment line

exhibited large amplitude disturbances did the crossflow instability signal change.

4.3.2 Testing in a Raised Disturbance Level Environment

In order to see whether the transition mechanism along the attachment-line boundary layer was

sensitive to acoustic noise, trips were fitted to the wind tunnel walls (as described in Chapter 3). The

model was mounted in the rear testing position. Schlieren photography (fig. 4-26) revealed that the

weak shock wave emanating from the upper wall trip passed just ahead of the tip of the model, thus

ensuring that the attachment line was irradiated with noise from turbulent boundary layers on both the

upper and side walls. (Note that since the wave emanating from the upper wall trip is not parallel to the

Mach wave emanating from the tunnel wall joins, we know that the trip is casting off a shock wave of

finite strength.)

4.3.2.1 Observation of Instability Waves with Increasing Surface Temperature

The hot wire was positioned at y / D = 4.02 and heating was applied in a similar manner as for

the quiet tunnel tests. Figure 4-27 shows the power spectra results for R = 780. The overall trend is

very similar to that under quiet conditions (fig. 4-18) with a wider range of frequencies being

amplified for the same heating levels.
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4.3.2.2 Capture of Transition Front Along Attachment Line

The hot wire was then traversed along the model in the y-direction in order to locate a transition

onset front. With Tcontro I = 90°F and Reoo = 3.36 x 106/ft, a front was located at y / D = 4.3 as

shown in figure 4-28. Its shape and location coincided with the transition front found for the quiet

tunnel case. Therefore, the lower wall temperatures effectively pushed the transition front away from

the tip, but was counteracted by the increased noise level in the tunnel which pushed it back toward the

tip. (In the this case, the wall temperature distribution was lower than for the quiet tunnel results,

80-110°F versus lO0-150°F, respectively. Moreover, the adiabatic Twall was -10°F for the quiet

case and 10°F for the noisy case. Therefore, the ratio of Twall / Twall(adiabatic ) in absolute terms

was much lower for the noisy case compared to the quiet case, 1.15 to 1.21 versus 1.24 to 1.36,

respectively.)

Figure 4-29 shows the frequency spectra for this traverse, which also seem to follow that of the

quiet tunnel results, except that a given spectrum shape occurred at lower wall temperatures, as
mentioned above.
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Figure 4-1. Enlarged view of the hot-wire probe and trip wire attached to the model.
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Wind off.

Laminar flow. No trip, R = 760.

Turbulent flow. 0.025 inch trip wire at y/D = 4.22, R = 760.

Figure 4-2. Attempted focused Schlieren photography of the attachment-line boundary layer,

showing the difference between laminar and turbulent cases. Hot wire at y� D - 5.00.
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Figure 4-13. Experimentally obtained R distribution along the attachment line at

Re. = 2.4 x 106/ft and 3.4 x 106/ft.
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Re., = 2.76 × 106/ft, Tcontro I = 75°F

Re= = 2.75 × 106/ft, Tcontro I - 150°F

Figure 4-14. Apparent appearance of turbulence with surface heating.
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Figure 4-15. Tcontro I = 40°F, y� D = 4.4, R -- 800. No disturbances detected by hot wire.
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Figure 4-16. Tcontro l = 110°F, y/D = 4.4, R ---800. Modulated wave packets detected
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Figure 4-17. Tcontro I = 210°F, y/D = 4.4, R = 800. Large amplitude, fully turbulent

signal detected by hot wire. Wave packets no longer seen.
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Figure 4-19. Power spectra of hot-wire response with increasing surface temperature.
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Figure 4-21. Power spectra of transition onset as located by a hot wire, Re** = 3.56 × 106/ft

and Tcontro I = 125°F (R ---800).
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Figure 4-24. Power spectra of hot-wire signal at 0 = 20 ° with increasing heating.
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Figure4-26.Shockwavefrom trip strippassesin front of cylindertip.
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Figure 4-27. Power spectra of hot-wire response with increasing surface temperature under

noisy conditions, y/D = 4.02, R - 780.
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5. ATTACHMENT-LINE BOUNDARY LAYER

STABILITY CALCULATIONS

An existing set of computational codes was modified in order to calculate the attachment-line

boundary layer disturbances for this experiment. These codes were developed by R. -S. Lin (refs. 87

and 88) but the underlying theory and method are reproduced here for completeness with no claim of

originality.

The overall procedure was to calculate an attachment-line boundary layer based on experimental

conditions. A stability code which allowed for three-dimensional oblique waves (known as a two-

dimensional eigenvalue approach) was then run for various wave angles and surface heating levels in

order to quantify the frequencies of the most amplified disturbances.

5.1 Compressible Swept-Infinite Attachment.Line Boundary Layer Solver

A highly accurate spectral/finite-difference code was used for the solution of the compressible

laminar attachment-line boundary layer over a swept-infinite leading edge. The numerical method

consisted of a fifth-order, fully implicit marching scheme in the chordwise direction and a Chebyshev

spectral collocation method in the wall-normal direction. Since a discrete set of local Cp distributions

was available and the spanwise variation was known to be weak, this code was used to provide

boundary layer velocity and temperature profiles for the investigation of compressible attachment-line

boundary layer stability characteristics.

5.1.1 Boundary Layer Equations

For laminar flow on an attachment line, there exists a similarity solution for the compressible

boundary layer equations (ref. 127). However, since information near, but off, the attachment line is

also needed for the present two-dimensional stability theory, it is necessary to solve the nonsimilar

boundary layer equations in order to provide mean flow information. The nonsimilar attachment-line

equations for a swept-infinite cylinder are obtained from the general three-dimensional boundary layer

equations by neglecting all spanwise derivatives. It is worth pointing out that for incompressible swept

attachment-line boundary layer flow, the independence principle holds, namely, the solutions for the

boundary layer in the plane normal to the attachment line are independent of the spanwise momentum

equation. However, for compressible flow the independence principle does not apply, as the momen-

tum equations are all coupled through the density variation. Thus the chordwise flow and the spanwise

flow must be calculated simultaneously.

Consider a conventional boundary layer coordinate system x, y, z where x and y are within the

plane of the surface and z is normal to it. For the attachment line problem, we take x in the chordwise

(normal to leading edge) direction and 3' in the spanwise direction. The boundary layer equations for a

steady compressible laminar flow over a swept-infinite cylinder are:
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Confinui_:

Momentum:

Energy:

a(pu.___])+ a(pw._._))= o (5-I)
ax &

1

pu-g+ (5-3)

ap=o (5-4)
az

w-_- &k &;_p u_-+ =

where Cp is the specific heat at constant pressure, and k is the thermal conductivity. The viscosity and

thermal conductivity are modeled by the Sutherland law for air.

State:

P= pRT

The boundary conditions for equations (5-1 to 5-5) are:

aT
z=0, u=v=w=O,and T=T w or v=v w or--_-=0

z--->_, u=u e, V=Ve,and T=T e

The chordwise velocity outside the boundary layer satisfies the following form of Euler equation:

due_ dPe
PeUe

dx dx

The boundary layer equations in their present form are singular at x = 0. By an appropriate

transformation the singularity is removed; specifically, the dependent variable U is replaced by
dU/dx atx= 0.
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5.1.2 Numerical Method

The spectral code, named SCALBL, obtains the numerical solution of the compressible swept-

infinite attachment-line boundary layer equations and provides high accuracy mean flows for the two-

dimensional linear stability code described in Section 5.2. This boundary layer code uses a mixed

Chebyshev-spectral and high order finite difference method, similar to the one employed by Pmett

and Street (ref. 128), to solve the nonsimilar boundary layer equations (5-I to 5-5). The numerical

method incorporates a fifth-order, fully implicit, finite difference method in the marching (chordwise,

or x) direction with a uniform step size. The scheme takes four initial steps of order one, two, three,

and four before settling into fifth-order accuracy. In the wall-normal direction, a Chebyshev

collocation technique is used. At each marching station, the discrete spectrally accurate governing

equations (5.1 to 5.5) are fully coupled and are solved by a direct method, while in the work of Pruett

and Street the system of discrete governing equations was solved by a preconditioned Richardson
iteration.

5.1.3 SCALBL Code

SCALBL requires that the surface pressure (Cp) distribution be first given or prescribed (as a

polynomial in x) for the case under consideration. In this case, the pressures were obtained from the

pressure tapped swept cylinder model. Other parameters, such as freestream conditions, sweep angle,

cylinder radius, domain size, and other numerical calculation quantities must also be stated. Wall

heating and suction may also be specified. Various output files are created, including all the profiles at

all chordwise stations, various Reynolds numbers, and local conditions at the attachment line. These

profiles are then read by the stability code, 2DEIG.

5.2 Compressible Two-Dimensional Linear Stability Theory

5.2.1 Two-Dimensional Stability Theory

Assuming that there is an infinitesimal disturbance propagating within the attachment-line

boundary layer, the instantaneous flow quantities (i.e., velocities, pressure, temperature, density, etc.)

can then be expressed as:

q(x,y,z,t)=_(x,z)+q'(x,y,z,t) (5-6)

where q = (u, v, w, p, T), and barred and primed quantities represent basic-state and disturbance-state

quantities, respectively. According to the "locally" swept-infinite assumption (a good approximation

for attachment-line flow), the basic state is assumed to be uniform in the spanwise direction. Substi-

tuting equation (5-6) into the compressible Navier-Stokes equations, subtracting the basic-state

information, and linearizing with respect to small perturbations results in a full set of compressible

linearized Navier-Stokes (stability) equations which best describes the stability characteristics of small

perturbations.

In general, to solve the full set of linearized Navier-Stokes equations (a set of three-dimensional

partial differential equations) is nontrivial. Therefore, in earlier studies, some ad hoc assumptions were
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madeto reducetheproblemintosomethingmoremanageable.Forexample,Malik andBeckwith
(ref. 69)approximatedtheinstantaneousvaluesof velocitiesu,v, w as:

(u, v, w) : [0, V(z), 0] + [t_(y), _3(y), _(y)]e i(ax+/3y-_)

where (fi, _3,_,) are the disturbance eigenfunctions. The pressure p, temperature T, and density p

were represented similarly. Here 0_ and /3 are the wavenumbers and co is the disturbance frequency

which, in general, are all complex. In temporal stability theory, a and/3 are assumed to be real and co

is complex. It is thus assumed that the wave-like oblique disturbances have x and y components of

wave number a and 13, respectively (fig. 5-1). Note that for an incompressible attachment-line

boundary layer, the most unstable disturbance is a two-dimensional traveling wave ( a = 0), while

in a compressible attachment-line boundary layer ( Moo < 4 ) three-dimensional traveling waves have

the largest growth rate (ref. 26).

Assuming the above form of the disturbances, Malik and Beckwith then applied a one-

dimensional parallel stability theory. For incompressible attachment-line flow, previous work by Lin

and Malik (ref. 54) has shown that this simplified theory has a tendency to underestimate the growth

rate of unstable disturbances. For the compressible attachment line, a similar result has also been

reported by Lin and Malik (ref. 87).

On the other hand, the two-dimensional stability theory proceeds from the full set of the linear

Navier-Stokes equations without making any further simplifications, and recognizes that the problem

consists of a set of coupled three-dimensional partial-differential equations with variable coefficients.

These coefficients, which depend on the basic flow, change strongly in both the wall-normal (z) and

the chordwise (x) directions, but for the present swept-infinite flow they are independent of spanwise

(y) direction (see eq. 5-6). Consequently, the solutions are separable in the variables y and t, and the

disturbance quantities of a general traveling mode can be expressed in the form:

q'(x, y,z,t) = O(x,z)e i03y-°x) + c.c. (5-7)

where c is the complex phase velocity whose real part represents the propagating speed of the

disturbance in the spanwise direction and its imaginary part is proportional to the temporal growth rate

COi (0) i =/_Ci).

Note that the introduction of the method of separation of variables (eq. 5-7) reduces the three-

dimensional linear partial-differential equations to two-dimensional ones in the x-z domain. Details of

the set of two-dimensional linear stability equations are given in Lin (ref. 88).

For the attachment-line flow, two fundamentally different types of solution are conceivable. The

spanwise disturbance-velocity component can have a symmetric solution, i.e. _(x, z) = _(-x, z), and

an antisymmetric solution, i.e., _(x,z) = -_3(-x,z). Both symmetric and antisymmetric perturbations

can be amplified in the attachment-line boundary layer, but the symmetric modes are usually found to

be the most unstable perturbation for both incompressible and compressible flows.
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Appropriateboundaryconditionsin thez direction are:

fi=_=_=7_=0,z=0,oo

which assign zero-disturbance amplitudes to the solid surface ( z = 0 ) and at the far field ( z _ oo ). In

the x direction, the boundary conditions for symmetric modes are:

fi= - =_=0, x=0
8x 8x o5:

u(x,z) = -u(-x,z), gt(x,z) = gt(-x,z), gl = @,Cv,7"), x = Xmax

Similarly, the appropriate boundary conditions in the x direction for an antisymmetric mode are:

_ _=7"=O,x=O
3x

Ct(x,z) = fi(-x,z), g](x,z)= -gt(-x,z), c) = (_, v_, 7_), x = Xma x

Due to the nonuniform nature of the attachment-line flow in the x direction, the method developed

here is, strictly speaking, aimed at studying the stability of an oblique traveling wave in the following
form:

i e(_)a_+&-o_
q'R = glR(X,Z) e L .1+ C.C. = Q_.R(X,z)e i['Sy-_] + c.c.

X

where OR (x, z) =- glR(x, z)e il a(_)d_. The above equation represents an oblique wave (i.e., a three-

dimensional wave) propagating in both the positive x and y directions. (A two-dimensional mode,

where nothing grows in the x direction, corresponds to a(x) = 0 .) However, due to the symmetric

nature of the attachment-line flow with respect to x = 0, it is conceivable that an identical disturbance

propagating toward negative x (still in the positive y) direction should also be possible. The linear

combination ( f' ) of these two (left and right) waves can be expressed as:

f'= Q-.R(x,z) ei[_y-_] + Q-.L(x,z) ei[13y-_] + c.c. = F(x,z)e i[13y-_] + c.c.

where

Q_.R(x,z)=Q_.L(-X,Z)-">F(x,z) = F(-x,z), for v',w',p',T"

O.R(x,z)=-O.c (-x,z) --*P(x,z) = -P(-x,z), for u'
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Notethatthelinearcombinationdoesnotaltertheeigenvalue,whichcouldbeeither13 or co. Thus,

for oblique modes, the eigenfunctions obtained by the current method actually represent the sum of a

pair of oblique traveling waves, however, propagating in different x directions. The effect of

wavenumber a(x) is implicitly retained in the eigenfunction in this approach.

For the current supersonic attachment-line boundary layer, oblique traveling waves are expected to

be the most relevant disturbances (ref. 26). In order to resolve this type of disturbance without

excessive numerical effort, a trigonometric factorization is introduced:

q'(x, y,z,t) = O(x,z)e i(fly-_) + c.c. = Tr(O_,x)_(x,z)e i(_y-_) + c.c.

where Tr(a,x)=sin(cr.x ) for q'=u" and Tr(a,x)=cos(cr.x ) for q'=(v',w',p',T'). Then the wave

angle can be defined as _ = tan-l(a/fl) (fig. 5-1). As shown by Lin and Malik (ref. 87), the use of

the trigonometric factorization allows the disturbance-amplitude functions to be resolved easier,

numerically. As well, it provides a means for examining disturbances traveling in a specific direction.

5.2.2 Numerical Method

The disturbance variable _ is represented in the double series:

n x-I n,-I

E
n=0 k=0

(5-8)

where Pn are regular polynomials {Pn(x)= x",n = 0,1,2,...} used for the x discretization, and rk are

Chebyshev polynomials of degree k used for the z discretization. In the x direction, both symmetric

and antisymmetric solutions (with respect to the attachment line) are possible. For symmetric (even)

solutions, all of the coefficients with n odd vanish identically, i.e., cn, k = 0 for n odd. Conversely, the

expansions with cn, k = 0 for n even are antisymmetric (or odd). It is convenient to chose n x even, so

that n x = 2m. Equation (5-8) can then be written as:

m-1 n_lO(x,zl=
n=0 k=0

for even solutions, and

m-1 n.-1

q(x,z)= E Ec2,,+l,kP2,,+l(X)Tk(_)

n=0 k=0

for odd solutions. By doing the above even and odd expansions, the symmetric and the antisymmetric

boundary conditions in the x direction are satisfied automatically.
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For temporalstabilitytheory,thegovemingequationsin thediscretesensecanberepresentedasa
generalizedalgebraiceigenvalueproblemof theform:

[a]_ = o)[B]_

where [A] and [B] are complex non-Hermitian matrices. The above eigenvalue problem is solved by

the QR algorithm which yields all the eigenvalues.

5.2.3 2DEIG Code

The two-dimensional stability theory is implemented in the program 2DEIG, with the basic flow

information obtained from the code SCALBL. In the temporal eigenvalue problem, the spanwise

wave number 13 is assumed to be real and must be prescribed, while the disturbance frequency co is

considered to be the complex eigenvalue to be solved for ( co = c.or + to i ). In 2DEIG, there are two

types of methods that can be used to locate the eigenvalues: global and local. For the global method,

in which a generalized eigenvalue problem is set up, all of the eigenvaiues are obtained by a direct

method. Unfortunately, along with the accurately computed values of the true modes, there appear

spurious unstable modes with large growth rates whose magnitude increases with an increase of the

size of the algebraic system of equations. These spurious roots arise due to the approximation of the

differential equations by a finite dimensional system of algebraic equations. Four filters are used to
remove modes that are not relevant:

filter 1: removes roots whose moduli are larger than 2.0; i.e., [[c_o[[> 2.0. This filters out most

of the spurious modes.

filter 2: removes modes propagating upstream; i.e., cr < O.

filter 3: removes highly stable modes; i.e., modes with COi < --0.5 X 10 -3 .

filter 4: removes the supersonic modes (a disturbance which has a phase speed such that the

difference between phase speed and freestream velocity is supersonic).

In addition, multiple calculations with different wave numbers (13) are possible. In the local method,

an initial guess for the desired eigenvalue is required, and the root which lies closest to the guessed

value is then computed by an iteration method.

Inputs to 2DEIG include wave angle, wave number range, symmetric or antisymmetric mode,

and number of collocation points in wall-normal and chordwise directions. Output includes temporal

growth rates and eigenfunction structure in a x-z domain. These complex data provide the amplitude

and phase information about the velocity, pressure and temperature perturbations.
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5.3 Boundary Layer Calculations Using SCALBL

A finite length swept cylinder will have a developing attachment-line boundary layer with

increasing distance from the tip, asymptoting toward its swept infinite state. The local boundary layer

conditions will therefore be changing with y. Thus, in order to apply SCALBL, a swept infinite code,

one must first chose a crossflow plane in which to do the calculations. The effective local sweep angle

is then found at that location, and SCALBL is used to produce the local boundary layer profiles.

5.3.1 Effective Local Sweep Assumption

The Cp distribution along swept cylinder model was obtained as described in Chapter 4. As seen

in figure 5-2, the local value of the attachment line Cp varies in the spanwise direction. For each

spanwise location, one can derive an effective local sweep angle based on the Cp at the attachment line

(CpA) and freestream Mach number:

Cp A _ PA - Poo
1 2
_,M_p_

For M n < 1, the isentropic relation applies:

_A = [1 + (___L)M2 3(_-1 )
P_

Combining gives:

tE 1')2 l+( ) cos2A xCPA =

Therefore, given the value of CPA from the experimental results, and knowing the freestream Mach

number, the local effective sweep angle ( A ) can be deduced.

This assumption of endless swept flow at each crossflow plane is a fair approximation away from

the tip of the model since properties are changing significantly faster in the chordwise direction than in

the spanwise direction.

As seen in figure 5-2, the effective local sweep angle asymptotes toward its swept infinite value of

76 ° as distance from the tip increases.
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5.3.2 Boundary Layer Profiles

Thecrossflowplaneat y/D = 3.6 (local sweep angle of 72.8 °) was considered to be a

representative example of how the flow along the attachment line would behave with surface heating.

Cp(O) was obtained by fitting a polynomial of the form:

Cp = co + clO 2 + c204 + c306

to the experimentally obtained surface pressure results. The boundary layer calculation extended from
the attachment line to 0 = +5 °.

Figures 5-3 through 5-5 show the resultant velocity, temperature, and density profiles through the

attachment-line boundary layer at y� D = 3.6 with surface heating. Figure 5-6 shows that points of

inflection arise in the velocity profile with increasing surface heating. This effect is a consequence of

the dependence of the viscosity/.t of the fluid on the temperature T. The curvature of the profile v(z)

of the main flow at the wall is derived from equation (5-3) with u = w = 0:

Jw= £'7',,"7',,'

Now, if the wall is hotter than the fluid in the freestream, Tw > T_ ; and the temperature gradient at the

wall is negative (dT/dz) w < 0, as shown in figure 5-4. Since for a gas the viscosity increases with

temperature, (d/t� dZ)w < 0. And since the velocity gradient is positive at the wall, it follows that:

Tw > T_ implies _ dz 2 )w > 0

Thus for a heated wall the curvature of the velocity profile at the wall is positive, and it follows

immediately that a point of inflection, d2v/dz 2 = 0, must exist within the boundary layer because the

curvature is vanishingly small but negative at z = oo. This means that the transfer of heat from the wall

to a gas flowing past it renders the boundary layer unstable (due to Raleigh's criterion) in a manner

analogous to a pressure increase in the downstream direction. The net effect of surface heating can

therefore be explained by the "opening up" of the neutral stability curve at high Reynolds numbers

(typical of inviscid-type instabilities) as well as a general increase in the size of the neutral curve (to

lower Reynolds numbers) with the subsequent decrease in the critical Reynolds number, as reported

by Kazakov (ref. 129).

5.4 Stability Calculations Using 2DEIG

For every given Reynolds number ( R ) and wave angle ( gt ), calculations were carried out for a

range of wavenumber ( 13). Keeping the Reynolds number fixed, the wave angle was then altered,

and the calculations repeated. This process was repeated until the wave angle at which the absolute
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maximumgrowthrateoccurredhadbeenobtained.Resultsshownarealwaysfor thiswaveangle,
whichproducedthelargesttemporalgrowthrate.

Becauseof the introductionof atrigonometricfactorization,asmallnumberof grid pointswere
requiredin the x (chordwise) direction to obtain a converged solution. An excessively large number of

points in the z (wall-normal) direction resulted in a very stiff problem and caused the solution to be

contaminated by round-off errors. Grid convergence tests conducted by Lin (ref. 88) had shown that

8 or 10 points in the x direction and 55 points in the z direction were typically required. For these

calculations, 55 points were always used in the z direction, and 10 points were used in the x direction

for wave angles between 30 ° and 45 °. However, for a wave angle of 25 °, it was found to be necessary

to reduce the number of points to 4.

5.4.1 Adiabatic Wall Results

In order to see the effect of altering just the Reynolds number on the amplification of boundary

layer disturbances, 2DEIG was run to obtain the temporal growth rates for the adiabatic wall condition

at y� D = 3.6. Figure 5-7 shows the results at three Reynolds numbers:

R = 685 (p0 = 7.5 psia,

R =791 (P0 = 10 psia,

TO = 20°F, Re_ = 2.62 × 106/ft)

TO = 20°F, Re_ = 3.49 × 106/ft)

= 840 ( P0 = 10 psia, TO = -20°F, Re_ = 3.93 × 106/fl)

These numbers were chosen as they represent the full working range of the wind tunnel operating

conditions. Notice that, as expected, increasing the Reynolds number increases the temporal growth

rate of the disturbances. Note that the calculations were carried out in steps of _ = 5 °.

The total amplification factor, N, is defined as:

S

fifty

o

where _ is the spatial growth rate of the most unstable mode integrated along the attachment line to

the point of consideration, s. The spatial growth rate may be obtained by converting the temporal

growth rate using the group velocity, Cg •

= - m d('Orfli O)i, where Cg = --
Cg dfl

This operation is referred to as the Gaster transformation. For each condition, the group velocity was

obtained from straight line plots of o9r versus ft. If it is then assumed that the local conditions at

y� D = 3.6 can be applied to all points along the attachment line, a constant spatial amplification rate
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canbe integratedalongthecylinderto obtainN factors.Figure5-8showstheN factorsfor theabove
operatingconditionsassumingaconstantspatialamplificationrate(uniformwall temperatureand
Reynoldsnumber).NoticethatthemaximumN factorobtainablebeforethereflectedshockwave
endsthetestat y/D = 5.6 is approximately 7 for the R = 791 case (the most typical operating

condition).

5.4.2 Surface Heating Results

Symmetric modes were always found to be the most amplified disturbances at adiabatic wall

conditions. However, the effect of surface heating on the antisymmetric mode was unknown.

Therefore, several calculations were made for both the symmetric and antisymmetric modes for the

Zwa11 = 138°F case. As can be seen in figure 5-9, the symmetric modes continue to be more amplified

than the antisymmetric modes, and were therefore the only modes calculated.

The boundary layer disturbances at y / D = 3.6 were then studied as the surface temperature was

increased from 0°F (near adiabatic wall condition) to 138°F. At each condition, the temporal amplifi-

cation rate for each symmetric mode wave angle was determined over a range of frequencies, and the

most amplified disturbances were determined. Figure 5-10 shows the evolution of the most amplified

disturbances with increasing surface temperature for R = 791 and local Mach number = 1.495. Note

that the amplification rate, frequency, and wave angle all increase with increasing surface temperature.

At a temperature of 0°F, the frequency of the most amplified disturbance was 63 kHz with a 30 ° wave

angle, while at 138°F it had increased to 72 kHz at 40 °. These results agree with those of Wie and

Collier (ref. 70). They too calculated the most amplified disturbances for an adiabatic wall to be

oblique waves at 30 ° to the attachment line at a local Mach number of 1.5 (fig. 5-11).

Again, if these local conditions are assumed to exist at all points along the attachment line (swept-

infinite condition), one can calculate the N factors associated with these amplification rates (fig. 5-12).

Surface heating is shown to have a marked effect on the achievable N factor along the attachment line,

with the maximum obtainable N factor at y/D = 5.6 being in excess of 20.

Figure 5-13 shows the disturbance amplitude function for u', v', and T' at various chordwise

locations for a ,6 = 0.14, 40 ° oblique traveling wave at R = 791. Notice that the predicted temperature

disturbances are greater than the velocity disturbances along the attachment line. Also note that the

temperature disturbances are a maximum at approximately z/6 = 0.38. Figure 5-14 shows the phase

relation between the disturbance amplitude functions at this condition. Note that the v' and T' distur-

bances are 180 ° out of phase at the height in the layer where their amplitudes are a maximum. Recall

from Chapter 3 that a hot wire will respond in the same way to increases in total temperature and

decreases in velocity. Since the temperature and velocity disturbances are out of phase at this height in

the layer, their net effect on the hot wire would be an additive one, which is quite fortuitous.

To obtain the hot-wire response to the combined temperature and velocity fluctuations, the signals

were vectorially represented:

T--_ = T'cos0ri" + T'sinOTJ and W--_ = W'cosOw'i + W'sinOw]
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If a is the coefficient which represents the hot-wire response to temperature fluctuations, and b the

coefficient for velocity fluctuations (where a + b = 1), then the wire will respond to:

?=(aT'cosOT-bW" cos 0w)i" +(aT" sin0 T -bW" sin 0w)

where the out-of-phase relationship between the temperature and velocity fluctuations has been

accounted for. Therefore, the magnitude of the hot-wire response is:

_=_{(aT'cosOT-bW'cosOw)2+(aT'sinOT-bW'sinOw) 2}

As the overheat ratio is increased, the hot wire responds more to temperature fluctuations than to

velocity fluctuations (a > b). Figure 5-15 shows 7 at three overheat settings. As can be seen, as the

overheat ratio is increased, the overall hot-wire response decreases.

A visual representation of the oblique disturbances can be made by plotting the instantaneous

contour of computed temperature fluctuation in the x-y plane at constant z (fig. 5-16). This "snapshot"

was obtained by freezing time at t = 0 in equation (7), expanding the expression and taking the real

part. The staggered pattern is the result of the combination of two traveling oblique waves. One is

moving toward the positive x and the other toward the negative x direction; both are moving in the

positive y direction. As can be seen, the interaction of the left and right propagating waves produces

constructive and destructive interference in a pattern similar to that seen by Lin (refs. 87 and 88).
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Figure 5-1. A pair of oblique waves; ]3(a) represents the wave number in the spanwise (chordwise)

direction; N is the oblique angle of traveling waves.
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6. DISCUSSION

6.1 General Experimental Configuration

The experimental configuration chosen for these tests was the best compromise for the given wind

tunnel and test objectives. The use of a forward swept model eliminated the risk of attachment line

contamination by the wind tunnel boundary layer, but raised the issue of the tests not being conducted

in a truly parallel flow environment. However, the flow in this case has been shown to asymptote

approximately to swept-infinite conditions within a few diameters' distance from the tip. What is truly

important is that a well conducted experiment be accurately reported so that CFD and stability codes

can be applied in the future.

The flow around the finite length swept cylinder was well modeled by the CFD code CFL3D. The

predicted bow shock wave (fig. 2-10) was in good agreement with that seen with the Schlieren system

(fig. 3-45). Measured equilibrium wall temperatures were also in close agreement with the BL3D

predicted values (fig. 3-19).

Using the pressure tapped model to obtain the surface pressure distribution was essential for

accurate determination of the length scale ?7 and for values of R. This was a major improvement over

previous tests, which relied solely on CFD-generated values that had no experimental verification

(e.g., refs. 65 and 85). Figure 4-11 shows that the attachment line Cp values obtained with CFL3D are

in reasonable agreement with the experimentally obtained values. Experimentally obtained R values

(fig. 4-13) are within 10% of the CFL3D solution (fig. 2-7).

Comparison of the chordwise velocity gradient term with other cylinders in supersonic flow

revealed that there is an effect of the Mach number normal to the leading edge. As can be seen in

figure 4-12, this effect is particularly important for cylinders with subsonic leading edges.

6.2 Trip Wire Data

It has been shown that attachment-line boundary layer transition under the influence of trip wires

is a function of wind tunnel disturbance level. The apparent shift of the transition onset boundary to

larger trip size, as shown in figures 4-6 and 4-7, could be attributed to a number of influences, most

noticeably tunnel disturbance level. The presence of a slight, favorable pressure gradient along the

attachment line may also be acting so as to damp out the disturbances and thus delay transition. If the

low tunnel disturbance level is the main reason for this shift, then this would suggest that current

design practice, based on previous results from conventional tunnels, may be conservative. This

would imply that aircraft manufacturers could relax the leading edge machining tolerances for

HSCT-type aircraft, thus saving production costs.

In order to more fully explore this new transition onset boundary, tests should be conducted at
other values of R. This would substantiate the current data set and extend the transition onset

boundary to both higher and lower values of k / 77, thus covering a wider range of R.
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Onequestionthat arisesiswhetherthetrip wireproducedturbulenceimmediatelyatthewire or
generatedisturbancesthatgrewastheyconvecteddownstream.If thewireproducedturbulence
immediately,thenmovingthetrip closerto thehotwirewouldnot altertheReynoldsnumberatwhich
full turbulenceoccurs.If, however,thewire introduceddisturbancesthatthenamplified,thenmoving
thetrip closerto thewire wouldrequireahigherReynoldsnumbertocreatefull turbulence.To answer
thisquestionthoroughlywouldrequiretraversesalongtheattachmentline downstreamof atrip wire.

6.3 Observation of Instability Waves

Perhaps the most striking thing of all of the results obtained is the remarkably close agreement of

the measured boundary layer disturbance frequencies (fig. 4-18) with those obtained with the stability

code (fig. 5-10). Both show the same behavior of increasing amplitude and frequency with heating,

and also have good agreement of the frequency of the most amplified disturbance (both around

70 kHz for Twall --- 120°F). This is the first time the frequencies of a supersonic attachment-line

boundary layer had ever been experimentally quantified, and their agreement with the 2DEIG code is

very encouraging. Further measurements, however, such as disturbance convection speed and distur-

bance wave angle, should be made before a complete verification of the stability code can be made.

6.4 N Factors

The calculation of N factors for the observed transition fronts (figs. 4-20 and 4-28) can be

undertaken with various levels of sophistication. Ideally, one would perform stability analyses based

on the local mean flow profiles and surface temperatures at various y/D stations and integrate these

varying spatial amplification rates along the attachment line. In order to reduce the complexity of this

calculation, approximations may be introduced.

The approximation of constant R along the attachment line is reasonable given the experimental

evidence fig. 4-13). Therefore, the 2DEIG stability calculations at y/D = 3.6 ( R = 791) can be taken

to apply to the entire length of the model. Consider again the transition onset in figure 4-20, which

appears to occur around y / D = 4.3 (y = 6.9 inches). The control temperature for this case was

125°F, which is close to the 120°F case investigated with the temperature sensitive paint (fig. 3-65).

As can be seen, the surface temperature under these conditions varies almost linearly from 50°F near

the tip to 120°F at y = 7 inches. Since surface temperature is known to be a strong driver of the spatial

amplification rate, this effect must be accounted for. Consider again the spatial amplification rates
calculated for the R = 791 case:

Wall temperature/°F Spatial amplification rate/inch

0 0.79

46 1.48

92 1.97

138 2.39
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Figure3-65maythenbediscretizedaccordingto thefollowing:

y range/inch Average wall Average spatial _i

temperature/°F amplification
rate/inch

0-3.5 69.0 1.72 6.02

3.5-5.5 115.0 2.05 4.10

5.5-6.0 117.5 2.18 1.09

6.0-6.9 117.5 2.18 1.96

which gives a total N factor (= _,An i ) of 13.17, which is substantially larger than those measured in

conventional noisy tunnels.

In the case of the noisy tunnel, the transition onset was located at the same location along the

attachment line as for the quiet tunnel, but at a lower control temperature of 90°F, as well as a slightly

lower freestream Reynolds number (3.56 x 106/ft versus 3.36 x 106/ft). Referring to the temperature

sensitive paint image in figure 3-63, we see that this control temperature corresponds to 30°F near the

tip and 95°F at y = 7 inches:

y range/inch Average wall Average spatial An I.

temperature/°F amplification
rate/inch

0-2.5 46.0 1.48 3.70

2.5-5.5 76.7 1.81 5.42

5.5-6.9 92.0 1.97 2.76

which gives a total N factor of 11.88.

The spatial amplification rate can be defined as:

ldA d
fli - - lnA

ndy dy

(ref. 26), where A is the rms amplitude of any oscillating flow variable. Thus if a hot-wire

anemometer follows the peak rms disturbance amplitude downstream, the logarithmic derivative of

the signal amplitude can be interpreted as -/_. Consider again the transition onset as located by a hot

wire for the quiet tunnel case (fig. 4-20). If the log derivative of the rms signal is plotted versus y, and

a straight line fitted to the results (fig. 6-1), a spatial amplification factor of 1.07/inch is obtained for

the Tcontro l = 125°F case. This can be compared to the 2DEIG obtained rates of 1.97/inch for
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Twatl = 92°F and 2.10/inch for Twall = 138°F. Further work is obviously required before more

conclusions can be drawn concerning the accuracy of the stability method.

6.5 Effect of Tunnel Noise on Attachment-Line Transition

Increasing the freestream disturbance level of the wind tunnel has been shown to hasten the

attachment-line transition process, both in the case of the tripped boundary layer and with no trips.

Consider again the definition of the N factor at transition onset:

Therefore if the assumption is made that at transition the amplitude Atr is the same for both quiet and

noisy cases (Atrnoisy = Atrquiet), then:

AOn°isv - e(Nquiet-N"°isY) = e 13"17-11"88 = 3.6

AOquiet

(, , )The Kulite signal transducers gave Pnoisy/Pquiet = 8. At first this suggests that the attachment line

receptivity mechanism is not linear. However, attention must be brought to the fact that two (approxi-

mately determined) large (N factor) numbers are subtracted from each other, thus raising a high level

of inaccuracy. More work is clearly necessary to address the mechanism of attachment-line receptivity

before a statement concerning its functionality can be stated.

One fact remains clear---one should always have a measurement of the freestream disturbances to

correlate with the data being obtained on the model.

6.6 Stability Code Comments

In order to criticize the computational stability results, one must review the approximations

contained in both the 2DEIG stability code and the mean flow calculations.

The normal mode assumption (solution being separable in the time and spanwise directions)

within 2DEIG was a fair one to make, since it is reasonable to assume that the spanwise wavelength

of disturbances is much shorter than the typical length scale of boundary layer variation in the span-

wise direction. For instance, the spanwise wavelength of disturbances for the adiabatic wall condition

at R = 791 was approximately 13 _ ( -- 0.13 inch), whereas the typical length scale of boundary layer

variation in the spanwise direction was of the order of several cylinder diameters (where diameter =

1.6 inches). The code fully accounted for mean flow variations in both the chordwise and wall-normal

directions and, in addition, it admitted general three-dimensional disturbances, which are known to be

the most amplified type of disturbances at this Mach number. As a result, this code can be considered

to be state of the art, and improvements in the overall technique must first be found in the mean flow
calculations.
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Two importantconsiderationsstandoutasfar asthemeanflow calculationsareconcerned:(1) the
resolutionof thefinite lengthflow field,especiallynearthecylindertip region,and(2) theaccurate
definitionof theattachment-linetemperaturedistributionfor inputto thestabilitycalculations.

The cylinder tip region has been shown to be an important consideration in initializing the

attachment-line boundary layer. Great care must be exercised to ensure that a sufficiently dense and

smooth computational (CFL3D) grid is placed around the tip to capture the rapidly changing flow field
in that area.

At the moment, the boundary layer mean flow input to the stability calculations are based on the

locally swept infinite code SCALBL, which is sufficient for constant temperature regions far away

from the tip. However, if there is a surface temperature gradient along the attachment line, then the

temperature profile at a given distance along the cylinder will not be the same as if the whole cylinder

were at the local wall temperature. This will lead to changes in density and viscosity profiles and,

therefore, if the surface temperature gradient is large enough, to significant changes in stability

characteristics. If possible, the attachment-line boundary layer should be calculated by a truly three-

dimensional spanwise marching program or, otherwise, with (1) constant wall temperature or (2) the

measured wall temperature. A stability calculation would then show whether these effects are large

enough to worry about. However, no such code exists at this moment and such a calculation will

probably never be done, since to facilitate marching, a set of initial conditions must be provided to

the code. Unfortunately, for the current swept cylinder problem, there is no shortcut for finding that

initial condition. This leaves the full Navier-Stokes solution, which, although not impossible, is a

computationally expensive exercise.

As seen in the temperature sensitive paint images, a significant chordwise temperature gradient

is established as surface heating is increased. The effect of this on the stability calculations has yet to

be explored.

6.7 Crossflow

The hot-wire signals at 0 = 30 ° repeatedly gave a turbulent signal (figs. 4-23 and 4-25), which

suggests that crossflow instability is present and responsible for this amplification. Increasing the

surface heating had no effect on the hot-wire signal for Twall < 100°F, at which point the attachment-

line-type bulge appeared, indicative of the large amplitude disturbances "spilling over" from the

attachment line to the hot-wire position.

In order to predict the most amplified crossflow disturbances as a function of 0, a code such as

COSAL (employing a swept-infinite assumption) could be used as a first approximation. This could

also address the amplification of the traveling crossflow disturbances to check that stationary

crossflow vortices are indeed the most amplified for this configuration.

6.8 Hot-Wire Instrumentation

Since the interpretation of the boundary layer physics relies on the instrumentation used to make

measurements, attention must be paid to the primary, diagnostic tool, namely the hot wire.
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Thefzrstissueconcernstheplacementof thewire within theboundarylayer.Sinceneithera
boundarylayertraversemechanismnorareliableopticalverificationwereavailable,theexactposition
of thehot wire within the layerwasalwaysunknown.Thisraisesthequestionof whatpartof the
eigenfunctionthewire wasmeasuring.Sincetheboundarylayerthicknesswill changeslightlywith
surfacetemperature,thentraversingthewire alongtheattachment-linetemperature_adientatconstant
z will undoubtedly alter the z/_ location.

The calibration of the hot wire was also an issue, since it was desired to obtain quantified distur-

bance amplitudes and growth rates. However, as mentioned in Chapter 3, the hot-wire sensitivity to

total temperature and the incorporation of Mach number into the Nu = Nu(Re) relationship would first

be required. Also, the dependence of the hot-wire sensitivity to overheat ratio would need to be more

fully explored, as would the sensitivity of the calibration to increasing surface temperature (resulting in

large temperature fluctuations).

6.9 Suggestions for Future Work

Future work in this area should address improvements to the current experiment as well as

directions for increasing our understanding of the flow physics.

The current experiment can be improved primarily through better instrumentation. First and

foremost, a boundary layer traverse is required not only to position the hot wire accurately in the

z direction through the layer, but also to traverse along the span and in the chordwise directions of

the model. This would produce the eigenfunction distribution through the layer, track disturbances

generated downstream of trip wires, and detect the evolution of transition due to crossflow vortices.

Time would also be saved since multiple points could be acquired during a single test. The positioning

of the wire in the layer should also be initially verified by optical means, implying that a suitable

vibration isolation scheme be found for the legs of the telescope tripod. To aid in the boundary layer

mean flow determination, a small pitot pressure probe should be developed (less than 0.001 inch

diameter). This could be attached to the boundary layer traverse mechanism. Pressures in the tunnel

need to be accurately measured with respect to a reference condition, requiring a high accuracy

absolute pressure transducer. The resolution of the data acquisition system would also be increased

by replacing the 12 bit A/D card with a 16 bit A/D card. Oscillations in the tunnel stagnation pressure

should be addressed by changing the appropriate proportional with integral and derivative (PID)

parameters in the tunnel control system. If this is not possible, then the computer DMA buffer size

should be increased so that longer periods of time-dependent data may be recorded. The hot-wire

probe design should also be readdressed, with a smaller support block preferred (this is related to the

boundary layer traverse). Hot-wire calibration would also be desirable, but would be a major research

undertaking in its own right. Determination of the disturbance wave angle would be a major verifica-

tion of the stability code, and might be achievable with two hot wires. Hot films laid on the surface of

the cylinder could also be used in order to obtain the convection speed of the disturbances along the

attachment line. Different internal heating arrangements could be tried in order to try to reduce the

chordwise and spanwise temperature gradients. The naphthalene sublimation technique could be

improved by trying a different sublimation chemical that has a vapor pressure/temperature charac-

teristic which would allow sublimation at the adiabatic wall temperatures. And finally, observation of

the transition onset might be achievable using the temperature sensitive paint technique if the model

were thin-walled and made from a poor thermal conductor.
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Onthecomputationalfront,thecurrentresultscouldbeimprovedby performingafinite-length
stabilityanalysisfor thecaseof the captured transition front along the attachment line. Such an

analysis would involve the generation of a flowfield by a Navier-Stokes code, providing sufficient

resolution in the normal direction through the boundary layer to resolve the second derivatives neces-

sary for stability analysis. This would provide a definitive solution for the generation of N factors that

could be compared to the simplistic swept-infinite cylinder approximation.

Directions for future research should include the mapping out of the so-called Poll chart to both

higher and lower values of R. Three-dimensional disturbances could also be investigated, particularly

placed in the chordwise direction to study the contamination of the attachment line. Many ideas arise

concerning the input of controlled disturbances into the attachment-line flow, such as oblique distur-

bances and harmonic sources (to amplify a single frequency). Oblique disturbances could be input via

suitably positioned electrodes in the surface of the model. Harmonic sources are usually input with

subsurface speakers, or speakers in the settling chamber with a suitable receptivity mechanism.

Having established the physics of the attachment-line flow, the next phase of the investigation

could revolve around control mechanisms, such as surface suction, and how suction should be applied

(i.e., hole size, placement, suction coefficients). Only then could one definitively describe how to place

a laminar flow control surface along the leading edge of a HSCT-type aircraft.
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Figure 6-1. Measured spatial amplification rate for the quiet tunnel transition onset case.

Reoo = 3.56 x 106/ft and rcontro l = 125°F ( R -- 800).
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7. CONCLUSIONS

Experiments were conducted on a 76 ° swept cylinder to establish the behavior of the attachment-

line transition process in a quiet, low supersonic Mach number flow. The use of a finite length

cylinder has been shown to be a useful tool for modeling the flow along the leading edge of a

highly swept supersonic wing and for studying the flow physics of the attachment-line transition

process.

The use of a pressure tapped model allowed for accurate values of R and 77 to be experimentally

obtained, and these were in approximate agreement with those obtained with CFD.

A hot-wire anemometer system, capable of achieving frequency responses in excess of 200 kHz,

was developed for Mach 1.6 operation.

For a near adiabatic wall condition, the attachment-line boundary layer remains laminar up to the

largest obtainable R of 760 at an s / r/ of 3300.

The attachment-line boundary layer transition under the influence of gross contamination (i.e., trip

wires) is a function of wind tunnel disturbance level, and a transition onset boundary for this flow

is established. This boundary suggests that current design practice, based on previous results from

conventional tunnels, may be conservative.

The use of internal heating to raise the surface temperature of the attachment line in order to induce

boundary layer disturbances was demonstrated experimentally.

The frequencies of the most amplified attachment-line boundary layer disturbances were quantified

over a range of temperature settings.

Experimental results were in very close agreement to those predicted by a linear stability code by

R. -S. Lin of High Technology Corporation, Hampton, Virginia, and provided the first-ever

experimental verification of these disturbances and the nature of their growth with surface heating.

A controlled data set was obtained for transition onset along the heated attachment line at R = 800

under quiet tunnei conditions. This transition location was found to correlate with an approximate

N factor of 13.2.

Increasing the tunnel disturbance level through the use of trips on the walls of the wind tunnel

caused the transition onset to occur at lower wall temperatures. This transition location was found

to correlate with an approximate N factor of 11.9, so suggesting that the attachment line is

receptive to increases in the freestream disturbance level.

Flow visualization techniques used included Schlieren photography, oil flow, temperature sensitive

paint, and naphthalene sublimation. The latter revealed the presence of stationary crossflow

vortices off the attachment line, and a hot wire traversed in the chordwise direction appeared to

indicate that these vortices led to turbulent flow around an angle of 30 ° .
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APPENDIX AuSWEPT CYLINDER LOAD ANALYSIS

The swept cylinder has spacer blocks which provide vertical height alteration. Maximum test

section blockage is obtained with the cylinder in its lowest position. In this condition, the frontal area

presented to the oncoming airflow is 5.5 inches long and 1.6 inches in width (8.8 in 2 area), resulting

in 6.9% blockage.

Selected Materials

The following material properties were taken from CRC Handbook (ref. 130):

• Aluminum 6061 T6 (ultimate strength at 75°F = 45,000 psi) for cylinder model and window
blank.

Aluminum 2024 (ultimate strength at 75°F = 25,000 psi) for cylinder spacer (later changed to a

fully cured polyurethane polymer), splitter plate, splitter plate spacer, and splitter plate support
blocks.

• All screws were Grade 8 and met Mil Specifications.

Natural Frequencies of Model

The swept cylinder was modeled by a normally cantilevered circular beam of 16.534 inch length,

1.6 inch diameter, and 0.125 inch constant wall thickness. From reference 131, the frequencies

(in hertz) of the first three fundamental modes of such a cantilevered beam are:

1.758 [ E1

fl =--_pA

where A = r27c and I = r3trc.

Also from reference 130:

30.850 [ E1

p (6061 AL) = 0.098 lb/in 3

E (6061 AL) = 10.0 x 106 psi
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Therefore:

fl = 10, f2 = 64, and f3 = 180 Hz

A potential for oscillatory, shedding vortices exists with frequencies in the range 431 < f <

582 Hz (Section 3.5.8). Since the first three natural modes of vibration for the cylinder are not in this

range, a state of vortex-induced cylinder resonance is not predicted.

Maximum worst case loading on the model is given by applying maximum tunnel pressure, i.e.,

applying P0 over the area of the model. Maximum P0 = 10 psia. If this loading were directed so as

to be normal to the cylinder, then the projected area of the cylinder would be maximized at 26.2 in 2.

This would produce a maximum total force of 264 lb. Resolving moments and forces about the root

of the model produces a maximum root moment = 2178 in-lb, and a maximum vertical force at the
root of 256 lb.

From Oberg et al. (ref. 132), the deflections at the tip of the model are given by:

WL 3

8E1

This yields a maximum deflection = 0.093 inch, which would correspond to an alteration of the sweep

angle by 0.32 ° .

Bolt Failure Due to Shear

A bolt of diameter d and length L under tension and an applied normal force can be modeled by

applied axial and normal forces of F x and Fy, respectively, applied at the end of the bolt. According

to reference 132, this gives rise to stresses at the built-in end of the bolt (at positions a and b) of:

1.273 ( 8LFy 1.273 ( 8LF v
a a = ---_- _ -_ Fx ) and a b = - ---_-- _.---_ + Fx )

where the maximum normal stress is given by:

Va = 0.5era and _'b = 0"50"b

If all model loads are transmitted solely through the forward 0.5 inch support bolt, then F x = 88 Ib

and Fy = 256 lb. With L = 4.5 inches, this produces a maximum stress at point b of crb = 1118 +

F/4 or vb = 559 + F/4, where F is the tension due to bolt tightening. If we assume F = 100 lb, then

"rb = 584 lb/in 2 resulting in a shear force = 1174 lb.

Engineering Manual Series (ref. 133) gives the material strength for this support bolt as 17,535 lb.

Therefore, the factor of safety for this design due to bolt shear failure is 15.
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APPENDIX BmPRESSURE MODEL MACHINING NOTES

A 1.6 inch diameter cylindrical rod, made from AL 6060 T6 and gun-bored, and a 14" split box

holder for the cylinder were supplied from the Ames Machine Shop. All machining mentioned here

was undertaken in the Fluid Mechanics Laboratory by the author.

1. A milling machine was used to cut a 7 inch long, 120 ° wide opening in one side of the cylinder to

create an access panel.

. The smallest drill bit in the FML workshop was a size 70; hence the tap holes were chosen to be of

0.020 inch internal diameter. These holes were carefully drilled out perpendicular to the cylinder

surface using the milling machine according to the pressure port hole pattern (see text).

. Using a bull nose cutter, an access panel was cut from another 1.6 inch diameter AL 6061 T6

cylinder, also supplied by the Ames Machine Shop. This was fitted by hand into the opening of

the original cylinder. The panel was then temporarily attached to the cylinder for finishing of the

external diameter and initial polishing.

4. 8 x 2-56 (UNC) machine screws were drilled and tapped to hold the access panel onto the

cylinder. These were countersunk with their heads contoured to fit the surface of the cylinder.

. The cylinder was then placed in the 14 ° split box holder in order to cut the parallel ends of the

model. Great care was exercised in making the final cuts to the apex. A special support structure

was built around the apex to lessen the vibration level of the model. Final cuts were made at

0.001 inch to get a high surface finish.

. The two holes for the attachment bolts were then drilled, followed by the hole for the pressure

tubing. Since the latter hole was doglegged, great care was taken to align and assure correct depth

of bores. The inside corner of this instrumentation hole was rounded so that the plastic pressure

tubing did not become severed.

. The access panel was then removed, and the pressure tap piping was constructed. External size 70

holes were widened to size 60 holes on the inside of the cylinder, into which small stainless steel

pipes (size 17 AWG) were lightly hammered. An aluminum based bi-epoxy was then applied

with a syringe to form the seal around the stainless steel piping and the interior cylinder surface.

8. 10 ft long pieces of clear Tygon tubing were fed through the instrumentation hole and connected to

the stainless steel pipes (working rearward from cylinder tip) and numbered accordingly.

. A vacuum test was then applied. Tape was used to seal off all the exterior faces of the pressure

ports, and a vacuum pressure was sequentially applied to each. All ports held their applied

pressure.
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10.Thetapewasthenremovedandall but two portsretumedto atmosphericpressure.A size70drill
bit wasusedto removesuperfluousfiller, andbothportsreturnedto atmosphericpressure.

11.Theexteriorfacesof theportsandtheendsof theTygontubingwerethensealed.

12.Variousdesignswereconsideredfor sealingtheapexareaof thecylinder,but themostfavorable
wasa solid insertthatcouldslideinto theopenendof themodelandbemachinedto shape.The
insertwasshapedsoasto passoverthepressureportpipingandyethaveenoughinteriorareato
allow for fasteningto thecylinderwith machinescrews.

13.Two 3/8 inchdiameterbreatherholesweredrilled into themodelon therearwardfacingsidein the
apexarea.Thesewereto allow for fastequalizationof pressureattunnelstartupandalsoto aidin
drainingthemodelof water.

14.Final finishingwasachievedby filling joins andscrewheadswith wax,thenpolishing.

15.With thecompleteassemblyfinished,thepressuretestswererepeatedwith no failures.

Viewsof thefinishedpressuretapmodelcanbeseenin figure3-20.
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APPENDIX C--ESTIMATION OF POWER REQUIRED FOR

HEATED CYLINDER

The first power estimation was taken from reference 115. For a cylinder in crossflow, a correlation
of the form:

Nu D = C ReDmprn(Pr_ / prw)l/ 4

is proposed for the range 0.7 < Pr < 500, 1 < Re D < 106. All properties are evaluated at T_, except

Pr w, which is evaluated at Tw . Common values of C and m were listed in tabular form for a range

of operating conditions. Estimates were based on the following conditions:

Re_ =3.5x 106

Re D = 0.46 x 106

M_ = 1.6

Tw = 171°F = 350K

To = 25°F = 269K

From the provided tables:

C = 0.076

m =0.7

n = 0.37

The Prandtl numbers were taken as:

Pr_ = 0.746

Pr w = 0.722

Pr = 0.7

Therefore:

Nt_ = 639
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Newton' s law of convection cooling for a steady state process with uniform surface temperature
and no radiative heat losses was assumed:

qw k

A(Tw_ T_) - NuD--D

A 15% heat loss for conduction through the end of the model was also assumed. The surface area of

the model was approximated by A = zcDL. This resulted in a power requirement = 2 kW, which

translated into a watt density = 33 W/m 2.

The second estimation was taken from reference 116:

0"62ReDI/2prl/3 f (ReD _1/21
NuD=O'3-t [1+(0.4/Pr)2/3]114 1+\28200) J

This was found to be a good correlation for flows in the range 0.746 × 105 < Re D < 4.046 × 105.

If the same approximations are made as before, this equation yields:

Nu D = 746 (for Pr = Pr_o)

and

Nu D = 766 (for Pr = Prw)

This results in power requirements of 2.3 and 2.4 kW, respectively, which are in approximate

agreement with the previously obtained value of 2.0 kW.
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